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We have two potential approaches for our project, and we would greatly appreciate your feedback
on which one would be more suitable for us to pursue:

• Traveling Salesperson Problem (TSP)
• Boolean Satisfiability Problem Solver (SAT Solver)

1 Option 1: Traveling Salesperson Problem (TSP)

1.1 Algorithm Description
The Traveling Salesperson Problem (TSP) is an NP-hard optimization problem. Given a list of

cities and the cost of traveling between each pair of cities, the goal is to find the shortest possible
route that visits each city exactly once and returns to the starting point.

Our project will implement two parallel solutions to TSP: Brute Force Parallelization for
finding the exact optimal solution and the Divide-and-Conquer Strategy designed to provide
an approximate solution for large-scale TSP problems.

1.2 Brute Force Parallelization
• Explore all permutations of city ordering to determine the shortest path.

– Parallelism: Evaluate each permutation concurrently to calculate the total distance.

1.3 Divide-and-Conquer Strategy
• Divide the set of cities into smaller subsets.

– Random Partitioning - Randomly assign cities to different subsets.
– Proximity-Based Partitioning -

∗ Nearest Neighbor Expansion: Start from a random city and grow subsets by adding
the nearest unvisited cities until the subset reaches a desired size.

∗ Parallelism: Select multiple starting cities and grow each subset independently.
∗ K-Means Clustering with parallelism taught in class.

• Solve TSP for each subset independently.
– Parallelism: Each subset’s permutation will be calculated concurrently.

• Combine the solutions by connecting the closest pair of cities between subsets.
– Parallelism: Compute all distances between all pairs of points from the two subsets in

parallel to select the smallest distance.

Additionally, if time allows, we plan to experiment with other algorithms that guarantee to find
the optimal solution but are computationally expensive, such as the Branch and Bound Method,
and Dynamic Programming (Held-Karp Algorithm).

1.4 Parallelization Plan
Our parallelization plan will use Haskell’s Control.Parallel.Strategies library:
• Brute Force Parallelization

– Generate all permutations of cities and calculate the total distance for each route.
– Use parMap and rpar to evaluate the distance for each permutation in parallel.

• Divide-and-Conquer Strategy
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– Parallelized partitioning techniques like K-Means clustering and Nearest Neighbor Ex-
pansion using parMap and rpar.

– Solve TSP for each group in parallel using the brute force method above.
– Parallelize distance calculations for merging subsets using parMap and rpar.

1.5 Input Data
Our program will use a distance matrix to represent the input. The matrix will define pairwise

distances between cities, where distance[i][j] is the distance from city i to city j. The program will
support reading matrices from an external file.

Datasets:
• We will use publicly available datasets from TSP Library for testing and benchmarking.
• Initial testing will involve a small dataset with 5 cities.
• We will later expand to a larger dataset with 48 cities (US state capitals).

1.6 Reference
[1] Traveling salesman problem - Wikipedia
[2] Algorithms for the Traveling Salesman Problem
[3] Ishikawa, Kazunori, et al. “Solving for Large-Scale Traveling Salesman Problem with Divide-
and-Conquer.” SCIS & ISIS 2010, 8-12 Dec. 2010, Okayama Convention Center, Okayama, Japan.

2 Option 2: Boolean Satisfiability Problem Solver (SAT Solver)

2.1 Algorithm Description
The Boolean Satisfiability Problem (SAT) is a fundamental decision problem. Given a

Boolean formula in conjunctive normal form (CNF, AND of ORs), our objective is to determine
if there exists an assignment of truth values to variables that make the formula evaluate to true. By
the Cook-Levin theorem, (circuit)-SAT, and consequently SAT, is proven to be NP-complete, which
means that we do not expect an efficient algorithm to solve it in the worst-case scenario. However,
in many practical applications, SAT instances often exhibit structural properties or redundancies
that make them more tractable for modern solvers.

Modern SAT solvers build on DPLL by incorporating Conflict-Driven Clause Learning (CDCL).
The high-level idea of the algorithm is shown below:

Our objective is to build a parallel CDCL SAT solver.
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2.2 Parallelization Plan
The key idea behind a parallel SAT solver is to partition the search space effectively and

manage workloads dynamically to address imbalances. Solving a SAT instance involves
exploring a large search space defined by all possible variable assignments. Directly dividing this
space can lead to imbalanced workloads.

Initially, the search space is divided into guiding paths, which are sets of variable assignments
that restrict the solver to specific disjoint subspaces. To handle imbalances, we use dynamic
work allocation with task splitting and work stealing:

• Task Splitting: If the initial work pool is empty but some slave processes are still active,
the master requests an active slave to split its current workload. The slave then divides its
subspace into smaller parts using heuristics (e.g., unassigned variables or branching points).

• Work Stealing: Idle slave processes can steal tasks from the work pool or request tasks
directly from active slaves.

To implement a parallel SAT solver in Haskell, several libraries are essential for managing
concurrency, parallelism, and data structures.

• Control.Concurrent and Control.Concurrent.Async: provide lightweight threads and
synchronization tools, such as MVar, which are used to create a shared work pool for task
allocation and dynamic work stealing. They also offer high-level abstractions like async and
mapConcurrently, which enable parallel execution of slave processes and efficient manage-
ment of their results.

• Control.Parallel and Control.Parallel.Strategies: these libraries support parallel
computations by providing evaluation strategies like parListChunk, which can be used to
partition and evaluate tasks concurrently.

2.3 Input Data
To test a SAT solver, small handcrafted CNF formulas (5–10 variables) can be used for debug-

ging. We also generate larger random k-SAT instances near the phase transition for performance
testing. Additionally, datasets from SAT competitions and real-world applications can benchmark
the solver’s practical performance.

SAT solvers use the DIMACS CNF format. The first line specifies p cnf <num_variables>
<num_clauses>, followed by clauses with literals as integers (positive for true, negative for false),
each ending with 0. For example, the formula (x1 ∨ x2) ∧ (¬x1 ∨ x3) is represented as:
p cnf 3 2
1 2 0
-1 3 0

2.4 Reference
[1] Martins, R., Manquinho, V., & Lynce, I. (2012). An overview of parallel SAT solving. Con-
straints, 17(3), 304–347. Springer.
[2] Davis, M., Logemann, G., & Loveland, D. (1962). A machine program for theorem-proving.
Communications of the ACM, 5(7), 394–397. ACM New York, NY, USA.
[3] SATLIB - Benchmark Problems
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https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
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