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1. Introduction 
 

This project aims to develop a hardware/software system capable of playing Tetris. The 
project will be loosely based on how Tetris worked on 8-bit consoles like the NES, where instead 
of manually writing to a frame buffer, tile and sprite based graphics were used instead.  

The FPGA portion of the DE1-SoC board will be used to generate the VGA video signal.  
 As mentioned before, the FPGA will not just be a simple frame buffer, but more akin to a Picture  

Processing Unit (PPU) from something like the NES. The reason for using a tile and sprite-based 
PPU is due to VRAM limitations. If we build our VRAM out of M10K blocks, we have about 
480KB of VRAM to work with, since there are roughly 390 M10K blocks, each of which stores 
10Kb of data1. Since the VGA DAC expects 24-bit RGB values2, 8-bits for each of red, green, 
and blue, we need 24-bits per pixel. With a minimum resolution of 640x4802, direct RGB control 
of every pixel on screen would require 921.6KB of VRAM, about double the memory capacity 
we have available. Furthermore, if we want to smoothly scroll the background in any direction, 
we need to store 4 screens of data in VRAM, or over 3.6MB of data. This isn’t doable with the 
limited memory we have available, so we instead turn to tile-based graphics like those used on the 
NES, which allow saving memory through reusing tiles. Another trick we can borrow from the 
NES’s playbook is to use color palettes. Rather than assigning a full 24-bit RGB value to each 
pixel, we can instead define a set of color palettes in VRAM. Tiles, then, are stored as an array of 
numbers, with each number representing which entry in the color palette color table its 
corresponding pixel should be. Because we have quite a bit more VRAM to play with than 
something like the NES, we can define a color palette per tile rather than per sprite and per 
background. This allows further tile reuse since a single tile can be used with various color 
palettes to change its look significantly. Because the VRAM, along with the Object Attribute 
Memory (OAM) for the sprites, will be internal to the PPU, the PPU will need memory mapped 
IO to allow the CPU to write to VRAM and OAM. To allow for easier writing of VRAM, the 
PPU will have an auto increment option that allows the CPU to continuously write data to 
sequential locations in VRAM without having to manually update the address register every clock 
cycle. Our PPU will also need a VBLANK signal to tell the CPU when it is safe to access VRAM 
and OAM. 
 The CPU portion of the DE1-SoC board will be used to run the game code. However, 
once per frame the CPU also needs to read the controller data and write relevant data to VRAM 
and OAM. Because we have two cores2, and thus two simultaneous threads, we don’t have to deal 
with a messy and complex VBLANK interrupt system like what is found on the NES. Instead, we 
can have one thread solely responsible for processing game logic, and a second thread responsible 
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for executing the VBLANK routine, including updating VRAM and OAM, polling the controller, 
and anything else that should be run exactly once per frame. The advantage of this system is not 
performance but simplicity, since we don’t have to worry about saving the internal registers of the 
CPU to somewhere in memory so we can jump execution to the VBLANK routine without 
corrupting the game logic. To be clear, this doesn’t really offer a performance advantage, since we 
still need to pause execution of the program thread during VBLANK to avoid updating the state 
of the game while we are trying to construct the new frame; we don’t want to for example, be 
processing logic that moves a sprite on the game logic thread as we are writing that sprite’s 
position data to OAM on the VBLANK thread. 

 
2. Specifications 

 
Framerate: We will use a standard framerate of 60Hz, to allow compatibility with the widest 
range of VGA monitors. 60Hz also allows more time for VBLANK, which doesn’t hurt. 
 
VBLANK: We will take advantage of the VBLANK period to update graphics data, poll the 
controllers, and run any other routines that need to happen exactly once per frame. 
 
Resolution: We will use the base VGA resolution of 640x480, since, as discussed earlier, we are 
severely VRAM limited and even this level of resolution requires some level of tile reuse. 
 
Color Palettes: Our color palettes will be 6-bits, allowing 64 colors per palette and resulting in a 
palette size of 192B. Color palettes will have their own dedicated area of VRAM and we will 
allow for up to 64 of them, meaning the dedicated color palette area of VRAM will be about 
12.2KB in size.  
 
Tiles: Our tiles will be 16x16, for a tile resolution of 40x30 per screen and 80x60 per full 4-screen 
screen buffer. This means that one screen consists of 1,200 tiles, while the full size buffer consists 
of 4,800 tiles. The 16x16 tile size was chosen since it allows more detail and granular control than 
32x32 tiles without having an overwhelming number of tiles as would be the case for 8x8 tiles. 
With a 6-bit color palette, each tile will be 192B. If we allow for 1024 tiles to be stored in 
VRAM, so a 10-bit tile ID, we need slightly less than 200KB of VRAM for the tile graphics data. 
 
Tile buffer: With each tile slot in the screen buffer needing a 6-bit color palette specifier and a 
10-bit tile ID, so 16-bits per tile, and the buffer being made up of 4,800 tiles, the buffer size 
becomes 9.6KB. 
 
Sprite Data: We have about 200KB of VRAM left over which can be used to store the sprite 
graphics. To keep things simple, each sprite will be a single 16x16 tile. If larger sprites are 
desired, they can simply be constructed out of multiple sprites. With 200KB of VRAM to work 
with, we can support storing 1024 16x16 sprite tiles. 1024 is an absurd amount of sprites though, 
so we’ll support 256 sprites being on screen at once, which is nice because we can use a single 
byte as the sprite ID.  
 



 

OAM: Each sprite in OAM will consist of 7 bytes. Bytes 0 and 1 store the 6-bit palette ID and 
10-bit tile ID for the sprite. Bytes 2 and 3 store the X position of the sprite. Bytes 4 and 5 store 
the Y position of the sprite. Byte 6 stores attributes about the sprite, such as whether or not it 
should be flipped vertically and/or horizontally, and whether it should appear in front of or behind 
the background. With 7 bytes per sprite and 256 sprites, OAM is about 1.8KB in size. 
 
Controller: The controller will be a standard USB HID game controller, with a layout mimicking 
the SNES controller, mainly so we can use the shoulder buttons for piece rotation which is a nice 
quality of life thing over something like an NES controller. The controller will be polled during 
VBLANK, meaning it will have an effective polling rate of 60Hz which should be plenty for this 
kind of game. 
 
Audio: Audio will be generated using the DE1-SoC board’s built-in 24-bit audio CODEC.2 
Because we are already facing memory limitations with the FPGA, the HPS will handle driving 
the audio CODEC, meaning we can store the raw audio data on the SD card. Even though we 
only have two logical threads on the CPU, one of them does nothing during VBLANK and the 
other only does things during VBLANK. Thus, if we create a third virtual thread for handling the 
music, the operating system should have little trouble effectively scheduling the three virtual 
threads using the two logical ones. 
 
Hardware-Software Interface: A device driver will be used to communicate with PPU. The device 
driver will include functions to manually address the PPU registers as well as general purpose 
functions that perform higher level tasks such as moving sprites, writing to VRAM, etc. 
 
Software: The game we will run using this system will be an implementation of Tetris. Ideally, we 
would like to have levels that increase in speed as you complete them, just like the classic NES 
game.  

 
3. Major Tasks 

● Finalize all major design decisions such as resolution, tile size, VRAM capacity and 
layout, specifics of memory mapped IO, etc. The finalized design specifications will be 
recorded in the design document. 

● Create a Verilator-based testbench for the Picture Processing Unit (PPU) Verilog code 
before synthesizing it on the FPGA. The testbench will write out each VGA frame as an 
image file. 

● Design and write the PPU Verilog code based on the finalized specifications. 
● Implement the verified PPU code on the FPGA, connecting it to all the required IO. 
● Create a Linux device driver to call from C for interfacing with the PPU to make both 

testing the synthesized PPU and writing the game code easier. 
● Design a C-based test program for the PPU so the synthesized hardware can be tested. 
● Implement the game code for Tetris itself, splitting up the logic as applicable between the 

game-logic thread and the VBLANK thread. 


