
69

The Sparse Synchronous Model on Real Hardware

JOHN HUI and STEPHEN A. EDWARDS, Columbia University, USA

We present the Sparse Synchronous model (SSM) of computation, which allows a programmer to specify
software timing more precisely than the traditional “heartbeat” of mainstream operating systems or the syn-
chronous languages. SSM is a mix of semantics inspired by discrete event simulators and the synchronous
languages designed to operate in resource-constrained environments such as microcontrollers. SSM provides
precise timing prescriptions, concurrency, and determinism. We implement SSM in SSML, a toy language
along with a runtime system that includes a scheduler, memory manager, and an interface that works with a
real-time operating system to keep the model synchronized with the real world. Experimentally, we find our
implementation is able to perform jitter-free I/O in the 10s of kHz on a microcontroller.
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1 INTRODUCTION

A colleague, who trains rats to perform simple tasks, needed control over stimuli timing and
measurement of response timing. The usual ad hoc solution of writing C programs for a micro-
controller with timers requires a sophisticated programmer (e.g., not the typical biologist) and
is difficult to maintain across different hardware. Our colleague had moved to a microcontroller
running a cyclic executive that simulated a finite state machine stored in an array but found this
model limiting and the timing precision insufficient. Meanwhile, rats are not periodic enough for
a real-time operating system (RTOS) or the sample-driven implementation style typical of the
synchronous languages [4].

Our Sparse Synchronous Model (SSM), an earlier version of which we presented else-
where [12], was designed to address these needs. Our goals were precise (µs-level) timing specifica-
tion and measurement, deterministic concurrency, and platform-speed-independent input/output
(I/O). We call the model “sparse,” because its synchronous execution model is not driven by a peri-
odic timer and supports advancing time by arbitrary increments between instants of computation.
Since then, we have added functional language features, such as recursion, algebraic data types,
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Fig. 1. A signal generator program. sigGen generates a square wave on the out signal whose period is set by
hPeriod, which can be doubled and halved by pressing the button1 or button2 inputs.

and automatic memory management, and validated our technique on real hardware under existing
RTOSes.

Consider the signal generator program shown in Figure 1, which is written in SSML, the new
language we present here. This program generates a square-wave signal whose frequency can be
adjusted by two buttons. The entry point of the program, main (lines 12–15), takes handles for the
two buttons (button1 and button2) and a general-purpose input/output (GPIO) pin (out). The main
function creates a shared variable hPeriod (line 13) that determines the half-period of the square
wave and runs sigGen and sigCtl concurrently (lines 14 and 15).

The sigGen function (lines 1–5) generates a precisely timed square wave on the GPIO pin by
scheduling future output events and blocking on them. It consists of an infinite loop that sched-
ules a toggle update to the GPIO pin (lines 3 and 4) and then blocks until the update occurs (line 5).
In line 4, the after directive schedules the update according to the time of each loop iteration, inde-
pendent of processor speed. Meanwhile, sigCtl waits for input from either of the two buttons (line 8)
and doubles or halves the hPeriod variable depending on which button was pressed (lines 9–11).

Splitting up sigGen and sigCtl is a natural way to divide the two responsibilities of the program
and improves code modularity. They run concurrently; neither terminates. SSM’s deterministic
semantics guarantee the absence of data races, in contrast to non-synchronous languages that
typically require explicit yet error-prone synchronization to ensure determinism.

Our primary goal was the precise specification and measurement of real-time events. Our model
treats time as a first-class object, like a discrete-event simulator. Inspired by the synchronous lan-
guages [4] and Ptides [31], an SSM system operates according to model time, which advances in
discrete instants. In lines 2–5, the delay between sigGen’s toggle events is exactly the time set by
the hPeriod variable—model time does not advance outside of blocking statements like wait.

Model time is discrete and not dense, precluding Zeno-like behavior, because there is ultimately
a smallest timestep. For platform independence, the fundamental time quantum is not visible to
SSM programs. An SSM system only manipulates physical time units (seconds, milliseconds, etc.):
The runtime is responsible for converting the microseconds (usec) specified in line 13 to the cor-
responding number of ticks used by each platform’s timing hardware.
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Our runtime system isolates an SSM program from the passage of physical (wall-clock) time, pre-
serving the meaning of SSM programs across platforms. For both timing precision and efficiency,
SSM does not use the periodic sampling approach typically adopted by synchronous language im-
plementations, where the system performs computation in steps triggered by, say, a 10-ms periodic
timer. Though this sample-driven approach is straightforward to implement, the period must be
long enough to accommodate work performed in each instant, limiting timing precision. Instead,
our interrupt-driven runtime sleeps until the next active instant, using a precise hardware timer
to synchronize with physical time. With our approach, the frequency of our signal generator is
not limited by a low-speed periodic timer and also avoids unnecessary wake-ups when a lower
frequency is requested.

SSM provides deterministic concurrency by totally ordering the execution of concurrent tasks
within an instant. Specifically, it uses cooperative multitasking with a programmer-prescribed or-
der: In the signal generator program, sigGen takes priority over sigCtl when they run in the same
instant, because sigGen appears first in the par invocation in lines 14 and 15. By contrast, discrete-
event models are usually nondeterministic, as they erroneously treat simultaneous events (with
identical timestamps) as order independent. While simply prohibiting simultaneous events might
seem an attractive solution, simultaneity seems to be inherent to concurrent systems.

We wanted recursive function calls, so SSM is built around function activation records that
are created and destroyed as SSM routines are called and return. In addition to local variables
and linkage to its caller, a routine’s activation record stores its control state when it is suspended
waiting for an event and bookkeeping used by the runtime system to determine when to resume.

In this article, we present SSML, a toy language that embodies SSM semantics (Section 2). We
describe our compilation scheme (Section 3) and runtime implementation (Section 4) and discuss
how we embedded this runtime in an existing real-time operating system to interact with the
environment (Section 5). We evaluate the performance of our system on real hardware (Section 6)
and offer comparisons to related work (Section 7).

The source code for our runtime system is available at https://github.com/ssm-lang/ssm-
runtime.

2 SEMANTICS

2.1 Informal Presentation

We illustrate the semantics of the Sparse Synchronous Model through “SSML,” a toy language with
functional features such as immutable data and algebraic data types but no first-class functions or
closures; imperative features such as mutable references, assignments, and loops; and synchronous
features such as blocking parallel evaluation and delayed assignment. Functions defined in SSML
are not necessarily pure; they are allowed to incur side effects, such as assigning to references
or allowing model time to advance. Figure 2 is a contrived recursive Fibonacci example in SSML,
Figure 3 shows the abstract syntax of the language, and Figure 4 lists some built-in types and
functions.

The Fibonacci example in Figure 2 illustrates many of the novel features of SSML: mutable
references, scheduled future updates to references, blocking waits on such updates, and parallel
evaluation. Control starts at main in line 12, which begins by using the built-in ref function to cre-
ate a new mutable integer value referred to as r with an initial value of 0. These mutable references
function as synchronized communication channels among concurrent threads. The main function
then invokes the fib function in line 13, with arguments that represent the Fibonacci number to
be computed and the reference r, where the result will be placed. Normal values, such as n, are
immutable and passed by value; mutable references can both be updated immediately and sched-
uled to be updated later. Once fib terminates, main waits for r to be written (fib schedules a future
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Fig. 2. A contrived Fibonacci example in SSML with delayed assignment (after), waiting for variable writes
(wait), and parallel evaluation (par).

update to r before it terminates) and then calls print to display the value held by reference r, the
deref function returns the current value of a reference.

The fib function in lines 4–10 takes two arguments n and r. In the base case, where n is less than 2,
fib schedules a 1 to be written to r exactly 1 second after the fib function was invoked. Scheduling
a future update to a reference is one of SSML’s key temporal primitives. The fib function then
terminates instantly. SSML adopts the synchronous model of time in which everything except
wait is treated as running in exactly zero time [4].

In the recursive case, fib creates two new references, r1 and r2 (lines 8 and 9), before spawning
the execution of three functions in parallel: two recursive calls to fib, which will place their results
in r1 and r2, and a call to the sum function to add and return their results. The par does not
terminate until all three of its parallel branches have terminated. This ability to spawn multiple,
concurrent threads of control is another key temporal feature of SSML.

The threads forked by a par are evaluated left-to-right in each instant, ensuring that if a ref-
erence is written in a thread, then the change is immediately visible to all threads to its right.
However, because the fib threads communicate with sum through a delayed assignment, this de-
tail does not affect this example’s result.

The sum function waits for both the r1 and r2 references to be written (line 2) and then schedules
their sum to be written to r after one second and terminates instantly. Since r1 and r2 are references,
their values are obtained by applying the deref built-in function.

Figure 4 lists types and functions defined in the standard library. Programs consist of algebraic
type and function definitions. Algebraic data types (ADTs) are polymorphic and follow the basic
ADTs of ML-family languages, including OCaml and Haskell: A type constructor starts with an
uppercase letter (e.g., Bool) with zero or more type variables (that start with a lowercase letter) as
arguments. Each type constructor defines one or more data constructors (which also start with an
uppercase letter, e.g., True), each associated with zero or more payload fields of some specified type.
Types (e.g., of payload fields) can be a data constructor passed zero or more types as arguments, a
function type written with an infix→ , or a type variable. Types may be polymorphic, so

type List a = Cons a (List a) | Nil
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Fig. 3. Abstract syntax of SSML. Brackets [], bars |, asterisks ∗, pluses +, and question marks ? denote syn-
tactic grouping, choice, zero-or-more, one-or-more, and zero-or-one. Tokens are bold.

Fig. 4. SSML built-in types and functions.

is the usual polymorphic List type; List Bool is a list of Booleans, List Int is a list of integers, and
List (List Int) is a list of integer lists.

Figure 3 divides SSML expressions (which always produce a value) into four groups. The first
group describes a pure functional language with sequential evaluation: Expressions are data “vari-
ables” (lowercase names, e.g., foo); data constructors (uppercase names, e.g., True), which must
have all their arguments provided, if any; literals (e.g., 42); binary operations (e.g., a + 3); function
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Fig. 5. Expressing timeout behavior. Since a wait statement resumes as soon as any of its variables are
written, adding a “timeout” variable tt and scheduling it to be written in the future just before a wait ef-
fects a timeout mechanism. Here, since a and b are not written beyond initialization, main will resume after
3 seconds and both written a and written b will be 0, indicating they did not cause the timeout.

calls, which must have all their arguments provided (e.g., foo 3 4); local variable definitions, writ-
ten with a semicolon ; to emphasize that the new variable’s value is evaluated before the body
(e.g., let a = foo 3 ; a + 1 evaluates foo 3, binds it to a, and then evaluates and produces a + 1); and
pattern matches: multiway conditional constructs that evaluate an expression, compare the data
constructor of the resulting value against the patterns, bind the payload fields to the named field
identifiers (or discard them in the case of _), and then evaluate the associated expression.

The par construct evaluates multiple function calls in parallel and terminates when all of them
have been evaluated. The context where each function call is evaluated is called a process. Within
each instant, the various branches of a par are executed in order from left to right, ensuring any
side-effects (described below) are evaluated in a deterministic order.

Most SSML values are immutable, but like other ML-family languages, SSML has references to
mutable values. References are obtained and initialized via allocation (ref), read via dereference
(deref), and written to via assignment (← ). References are used as communication channels be-
tween concurrent processes. Like condition variables in traditional threaded code, references in
SSML “announce” when they are written and wake up processes that suspended to wait on them
(described below). However, unlike threaded code with condition variables, concurrent computa-
tion in SSML is totally ordered, ruling out data races.

SSML provides two primitives for temporal control: after, which schedules a delayed assign-
ment to a reference, and wait, which suspends the calling process until at least one of a set of
references is written to.

A delayed assignment (after) schedules a particular reference to be assigned to in a later instant;
the delayed assignment itself does not take any model time to evaluate. In Figure 2, both after

statements (in lines 3 and 6) schedule an update to r one second in the future. Time delays may
not be zero (normal assignment statements are used for this) or negative. SSML only allows one
outstanding update per reference; an update overwrites any pending update. This design avoids an
unbounded accumulation of updates and eliminates nondeterminism that could arise from instants
with multiple scheduled updates to the same reference.

A wait expression causes the current function to suspend execution in the current instant and
reawaken in the next instant in which any of the given references have been written. Unlike
discrete-event languages like VHDL [28], designed for digital logic simulation, SSML routines are
awakened by any write to a reference, not just writes that change the reference’s value. We chose
the event-on-write policy, because we wanted to make events explicit rather than merely using
them to model continuous behavior. Our policy enables us to model pure events through vari-
ables that only take a single value, “unit,” written as (), and to allow variables to convey sequences
of values without two identical values in sequence being inadvertently merged. For instance, in
Figure 5, the tt reference conveys a pure event to signal a timeout for the wait in line 4. SSML can
still express VHDL’s event-on-change policy by enclosing each assignment in a conditional that
only writes to a reference if its updated value differs from its previous one.
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Fig. 6. Children of a fork always execute in order: At 1 second, a write to a awakens routines first and second,
which execute in that order.

wait expressions are the only ones that directly advance model time; others may incur delays if
they cause a wait to be invoked. For instance, a function call will block until the callee returns, so
model time will pass if the callee waits, e.g., timeout2 in Figure 5. All other expressions terminate in
the instant they were started. SSML adopts the synchronous hypothesis, which insists all instants
are evaluated atomically, so that SSML programs’ specified real-time behavior do not depend on
the timing characteristics of the platform they are executed on.

The written function returns the model time at which a reference was last written and now eval-
uates to the model time of the current instant. When a process unblocks from waiting on multiple
references, testing written r = now indicates whether r was responsible for waking the process.

While par expressions are conjunctive (they block until all the called functions have terminated),
wait expressions are disjunctive—they resume when any of their references are written. This dis-
tinction explains why we evaluate two wait expressions in parallel in Figure 2 (line 2): wait r1 | r2
would have terminated after only the first of r1 and r2 had arrived, whereas sum wants the new
values of both r1 and r2. Line 2 also behaves as desired when r1 and r2 arrive simultaneously.

In each instant, the children of a parallel expression are executed in the order they are listed.
Figure 6 illustrates this policy: At 1 second, the delayed assignment to a will wake up both foo and
bar. However, because bar appears before foo in the par expression on line 10, bar will run first,
reading a’s new value of 1 and changing it to 5. Then, foo will run, multiplying a by 2 to produce 10.

To perform I/O, SSML programs interact with input and output references. These references are
given to main as parameters and abstract the external environment, akin to how C programs may
communicate with hardware peripherals via mapped memory. The runtime is responsible for
conveying the environment via these references: Input references may be externally updated at
the beginning of an instant, while output references produce some external side effect (invisible
to the SSML program) when assigned to. Otherwise, these references behave the same as regular
SSML references.

2.2 Formal Semantics

SSML is a call-by-value, pass-by-value functional language; we formally present the semantics of
SSML as a term rewriting system in the style of Crank and Felleisen’s reduction semantics [10, 24].
Our reduction rules are defined for a subset of SSML (focused on the novel aspects of the language),
described as a lambda calculus SSMΛ whose syntax is shown in Figure 7 and whose semantics is
defined in Figures 8 and 9. Figure 10 illustrates how these rules operate on a small example.

2.2.1 Programs. SSMΛ programs are expressions e that consist of other expressions and val-
ues v, which include primitive functions for references, assignment, and waiting. For example,
after d, r ← v becomes the expression after d r v, while wait x | y | z is written wait x y z.
par is not encoded as a built-in, because its operands are not evaluated the same way as regular
arguments. Instead, it appears as an associative prefix binary operator in SSMΛ: par a & b & c is
equivalent to both par (par a b) c and par a (par b c) in SSMΛ.
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Fig. 7. Abstract syntax for SSMΛ. Programs are expressions e that may include valuesv . Suspended programs
s cannot be reduced further in the current instant but have not terminated. Evaluation contexts E identify
where reduction may occur within the context of a larger program.

SSMΛ constructs are more primitive than those in SSML. For example, let expressions
let x = d ; b become an application of an anonymous function (λx . b) d. SSMΛ includes
timestamps and the unit value, but for brevity, we omit all other literals, algebraic data types,
pattern matches, conditional expressions, and while loops; Pottier and Rémy [24] explain how
they could be added.

Three constructs are never produced directly from SSML programs and are only created while
an SSMΛ program is running: memory locations, used to index values stored in the heap; check;
and suspend. These latter two encode wait expressions that are actively checking for updates or
have suspended for the rest of the execution.

2.2.2 State: Events, the Heap and the Event Queue. The state of an SSMΛ program includes the
current model time, a heap σ , and an event queue δ . Both the heap and event queue are partial
maps from memory locationsm to events, which are value–timestamp pairs written v@t . We use
subscripts to extract the timestamp and value of an event, i.e., (v@t)τ = t and (v@t)ν = v .

In both partial maps, the memory locations are the indices for SSMΛ’s heap-allocated references.
An event in the heap holds both the current value of its variable and information about when it
was last written, used by wait to determine when to resume. Meanwhile, events in the event queue
represent outstanding scheduled updates, where the timestamp records when the update will take
place and the value stores the value to be assigned. Note that a memory location may be present
in the domain of the heap but not that of the event queue; this situation happens when there is no
pending update to that location.

Advancing time involves moving events from the event queue to the heap, replacing the existing
event (value) of the variable on the heap. Time is advanced by the S-Tick rule, described below.

2.2.3 Execution. The execution of an SSMΛ program proceeds in two alternating phases. In the
first phase (S-Reduce), a program is reduced (evaluation contexts E control the reduction order) to
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Fig. 8. Rules for the inter-instant step relation� between configurations of the form 〈time, program, heap,

event queue〉. S-Reduce takes a step within an instant (using reduction rules, denoted by
t
−→); S-Tick advances

between instants on suspended programs.

either a value v , indicating the program has terminated, or a suspended program s that indicates
what the program will do in a future instant. During this first phase, every reduction sees the same
model time. In the second phase (S-Tick), time is advanced, assignments scheduled for that time
are made, and every point in the program that was waiting on a variable update (suspend) is
awakened to check on its variables (check).

Figure 8 defines the rules for the two phases, which proceed as a series of step relations� be-
tween configurations: 4-tuples 〈t , e,σ ,δ〉 that consist of the current time t ; the program we are eval-
uating e; the current values of variables, stored as events in the heap σ ; and future values of vari-
ables, stored as events in the event queue δ . The S-Reduce rule takes steps in the first phase to eval-
uate expressions within an instant, without advancing time; the S-Tick rule steps between instants.

2.2.4 Steps within an Instant. The S-Reduce runs the program in an instant by taking small

steps of the form 〈e,σ ,δ〉
t
−→ 〈e ′,σ ′,δ ′〉, where the expression e is a tiny part of the program being

evaluated (the redex), and both the heap σ and the event queue δ may be updated. The current
(model) time, t , however, does not change during these small steps. This is the synchronous
hypothesis: Instructions do not advance time, only scheduled events do.

The S-Reduce rule enforces a total evaluation order through an evaluation context E, which
specifies a unique “hole” (•) where a reduction may occur within the context of a larger program.
For example, the evaluation context of the form E e allows a function to be reduced before its
argument is applied, whereas v E mandates that the function be reduced to a value before the
argument is evaluated. Together, these impose an applicative, left-to-right evaluation order: The
function must be reduced before its argument. Similarly, the par E e and par s E forms regulate
the evaluation order between par branches by forcing the left branch of a par to be fully reduced
(i.e., to a suspended program or value) before reductions to the right branch may begin. We write
E[e] to denote the expression produced by substituting redex e into the (unique) hole of evaluation
context E.

Figure 9 lists the reduction rules used by R-Reduce within an instant as follows:

R-Beta is the standard beta-reduction rule, which insists its argument be a fully reduced value v .
The notation [x → v]e means to substitute v for all free occurrences of x in e .

R-Join terminates a par construct when both of its branches have terminated (were reduced to
values as opposed to suspended programs). This rule returns unit, discarding the values of
the two branches. The branches could have written their values to the heap or event queue.

R-Ref allocates a fresh memory location m on the heap and instantly assigns it to value v . Here,
“fresh” means a new memory location that is not currently in the domain of the map, i.e.,

dom(σ ) = {m | (m �→ v@t) ∈ σ }
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Fig. 9. Reduction rules between instantaneous configurations. R-Ref, R-Assign, R-After, R-Deref, and
R-Written create, write, schedule, and read events on the heap and event queue; R-Wait, R-Unblock, and
R-Block handle blocking waits on heap values.

and to assign an event v@t to locationm in the heap or event queue, we define

([m �→ v@t]σ )(m′) =

{
v@t whenm′ =m;

σ (m′) otherwise.

R-Assign instantaneously assigns the value v to previously allocated memory locationm.
R-After schedules an event strictly in the future, i.e., value v will be assigned to m on the heap

at time t + d > t . Note that this operation will overwrite any pending event on m and is
the only reduction rule that modifies the event queue (S-Tick updates the queue between
instants).

R-Deref returns the current value of (heap) memory locationm.
R-Written returns the time at which (heap) memory locationm was last written.
R-Wait forces a wait construct to block when it is first executed (even if one of the listed mem-

ory locations has just been written) by turning it into a suspend, one of the choices for a
suspended program s .

R-Unblock terminates a check construct (a rewritten suspend; see below) when at least one
of the variables (memory location mi ) it is waiting on has been written in the current
instant t .

R-Block is the opposite of R-Unblock: when none of the variables the check is waiting on
were written in the current instant, it turns back into a suspend that can be awakened
later.
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S-Reduce applies these rules to reduce a program in a particular instant into either a value v ,
which cannot be further reduced, or into a suspended program s , which express programs that
cannot be reduced further in the current instant.

2.2.5 Steps between Instants: The S-Tick Rule. Once the program has been reduced as much
as possible in the current instant (i.e., transformed into suspended program form as defined in
Figure 7), the S-Tick rule does three things: advances time to t ′, moves events at time t ′ from
the queue δ to the new heap σ ′, and “wakes up” all the suspend constructs by rewriting them to
check. Those suspend expressions were either wait constructs that had just executed and blocked
(R-Wait) or were check constructs that continued to block, because none of their awaited vari-
ables had been written when they were last reduced (R-Block).

The choice of the next time t ′ is what gives the sparse synchronous model its name: Instead of
always advancing to the “next” timestep, as is done in the more traditional synchronous languages,
SSMΛ allows the implementation to choose any time between the current time (i.e., t < t ′) and
the time of the earliest queued event. An efficient implementation will usually choose to “sleep” as
long as it can and only resume at the time of the next queued event, but the semantics are such that
a system may wake up before the next event, at which point it would discover there is nothing to
do and eventually suspend again. Note that the choice of t ′ is what makes the event queue behave
as a queue: The bound on t ′ is exactly the time of the soonest event in the event queue.

Once the next time t ′ is selected, the new heap σ ′ and event queue δ ′ are formed by removing
every event in the queue at time t ′ and placing it in the heap, overwriting the previous event/value.
Adding an event to the heap here mimics R-Assign, but only S-Tick dequeues events.

Finally, every suspend in the suspended program is rewritten into a check, which both trans-
forms the suspended program into an expression suitable for R-Reduce and “wakes up” each of
the blocked wait constructs.

3 COMPILING SSML

Our formal semantics specify execution in terms of a series of rewrites, but this is not a practical
implementation strategy. Instead, we compile SSML to efficient C code that leverages a language
runtime (Section 4) to exhibit the same behavior as the source program. In this section, we discuss
our compilation scheme for SSML programs and platform-generic aspects of the runtime.

3.1 Compiling Functions

Each SSML function f is compiled into two C functions: an enter function that allocates and ini-
tializes f ’s activation record and a step function that performs the work of f in a single instant,
e.g., from when it is resumed by some event to when it suspends.

Unlike C functions, SSML functions have the ability to suspend and resume between the execu-
tion of other functions. To enable this behavior, we maintain the local state of each SSML function
in a runtime-managed activation record rather than using C’s native stack. Each SSML function
has its own specialized activation record type that stores (let-bound) local variables, arguments,
and other runtime data.

Each activation record starts with the generic act_t header shown in Figure 11 to allow the
scheduler to manage them generically. Specifically, it is always safe to cast a pointer to a function-
specific activation record to an act_t pointer. Figure 12 shows a small function we will use as a
running example; Figure 13 shows the layout of its activation record.

The generic activation record header maintains information used to resume executing its sus-
pended step function: a pointer to that step function, its control state (an encoded program counter,
i.e., where to resume), and the number of its running children, so that its last child knows when
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Fig. 10. How the semantics operates on an example that starts at time 10 by allocating a fresh variable x with
value 0, then starts two parallel tasks. The first task schedules x to become 3 after 2 time units then waits
for x to be written; the second waits on x before assigning it 4. Note that once the program has suspended
for the instant, the S-Tick rule applies, advances the time to the earliest queued event (at 12), writes x, and
transforms each suspend to a check to wake them up. Note that each of the rules except for S-Tick operates
on the configuration through the S-Reduce rule.
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Fig. 11. Generic activation record header used by the SSM runtime, alongside some helper functions for
managing activation records. Each top-level function has its own activation record type struct that begins
with a generic act_t header so the runtime can manipulate activation records generically.

Fig. 12. An SSML function for illustrating how we compile SSML to C. This example features allocating,
accessing, and assigning to references; blocking on references, and parallel function calls.

Fig. 13. Activation record for the function in Figure 12, which starts with the activation record header
(Figure 11).

to resume it. In turn, it uses the pointer to its own parent’s activation record to resume the parent
when it is the last child that terminates. Finally, the header contains some data used for schedul-
ing decisions: two numbers related to its scheduling priority (described later in Section 3.5) and a
Boolean indicating whether the function has been scheduled to run in the current instant.

Figure 11 also shows two helper functions used to allocate and free activation records. f ’s enter
function, shown in Figure 14, uses enter_alloc from Figure 11 to allocate an activation record, before
populating its f-specific fields. Meanwhile, its step function, shown in Figure 15, calls leave before
terminating, to free the record. leave also decrements the number of children maintained by the
parent and reschedules the parent if f was the last child to leave.

We heap-allocate activation records using our own memory allocator, discussed in Section 4.2.2.
Others have shown that allocating activation records on the heap gives similar performance to
stack allocation [2] but makes suspending and resuming processes much simpler to implement.
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Fig. 14. Enter function for f in Figure 12, which uses enter_alloc to initialize the activation record header.

Fig. 15. Step function for the function in Figure 12.

3.2 Representing Values

The value_t type used in f ’s activation record to store arguments and local variables (Figure 13)
is our runtime representation for all SSML values. We use this uniformly sized representation so
that the rest of the runtime system can handle these values without having treat types differently.

Figure 16 shows the machine-word representation we use for values. For 32-bit processors (our
main target), the bits represent either a 31-bit integer or a pointer to a larger object on the heap,
which we describe in Section 4.2. On processors with 64-bit pointers, we restrict the integers to
31 bits for code portability.

The least significant bit (LSB) of the machine word described by value_t distinguishes pointers
from packed values (integers): Heap pointers are always word aligned, so their LSB will always
be 0; to distinguish them from pointers, packed values always have an LSB of 1. This technique is
typical in functional programming languages; we based our implementation on OCaml [16].
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Fig. 16. Memory layout for the untyped runtime representation of SSML values and macros for testing and
access.

Fig. 17. Representation of model time values on the heap.

Fig. 18. Runtime representation and helpers for SSML references.

SSML’s value encoding facilitates generating polymorphic code, since it allows manipulating
generic SSML values (e.g., both integers and larger objects) without having to distinguish them at
compile- or runtime. Figure 16 shows macros that test whether a value is a pointer to a heap object
and for converting between normal C values and packed SSML values.

We store SSML model-time values on the heap, since they are 64-bit integers (Figure 17). This de-
cision avoids headaches arising from wraparound: With nanosecond precision, 64-bit wraparound
only occurs once every 584 years; 32 bits afford us less than 5 seconds. Even with microsecond
precision, 32-bit timestamps wrap around in a little over an hour. new_time allocates a new time
heap object (pointed to by a value_t), while read_time reads a time value from the heap.

3.3 Scheduling References

SSML references behave like traditional variables in imperative languages (i.e., they hold the value
most recently written to them, read using deref ), augmented with the ability to schedule a delayed
assignment and for suspended routines to be reawakened by writes to a reference.

SSML allocates references on the heap using the type in Figure 18. In addition to its current
value, references also record when they were last_written; these fields are read using deref and
last_written. Each reference may have at most one new value scheduled for it in the future—a
pending event—recorded in the later_time and later_value fields (later_time is ULONG_MAX when
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Fig. 19. Linked list of triggers, used to wake up sensitive processes when a reference is written.

no event is pending). When later_time arrives, the later_value is copied to value, and any processes
waiting on that reference (tracked by the triggers list) are resumed.

The assign function implements instantaneous assignment, and updates the value and
last_written fields of a reference. In addition to the value being assigned to the reference, assign
also takes the priority of the current routine and only schedules sensitive routines with a higher
priority number to be consistent with the semantics.

The later function implements delayed assignment: It saves the future value and time to
later_value and later_time and asks the runtime scheduler to queue the pending update event at
later_time. If later is called on a reference that already has a pending event, then the existing event
is overwritten, to avoid an unbounded accumulation of events.

3.4 Suspending and Resuming

A process may suspend for one of two reasons: It is blocking on an assignment to a reference
(wait), or it is blocking on called child processes to return (a function call or par). In Figure 15, f ’s
step function demonstrates both scenarios. At each suspension point, the step function updates the
activation record’s program counter pc with a “return address” and returns from the step function.
The next time the step function is invoked, the switch statement resumes execution at the case
corresponding to that program counter; in most cases, this case immediately follows the return.

Before suspending, the step function conveys a wake condition to the scheduler so that it does
not remain asleep forever. When a process suspends due to a wait, it adds itself to the trigger
list of each reference it waits on. The trigger list is doubly linked to facilitate fast removal; its
node type definition is shown in Figure 19. Each node contains a pointer back to the waiting
function’s activation record (initialized in the enter function, such as in Figure 14) and is enqueued
and dequeued using sensitize and desensitize. When a reference is written, the scheduler traverses
through its trigger list and schedules any sensitive processes to execute in that instant.

A process can reuse its triggers across different wait suspension points but must use a unique
trigger for each reference it waits on. As such, its activation record needs to contain at least as
many triggers as the maximum number of references it waits on at once. f from Figure 12 only
ever waits on a single reference, so its activation record only needs a single trigger.

Processes also suspend when they spawn one or more child processes; they resume when all
those child processes terminate. In Figure 14, we see f ’s enter function adds its parent (caller) to
its activation record, so that it can revisit its parent while leaving; enter_alloc also increments the
parent’s children count. In Figure 15, f ’s step function terminates the process when control breaks
out of the switch statement. As shown in Figure 20, after leave frees the given activation record,
it decrements the children count of its parent. If this was the last child leaving, then it resumes its
parent’s step function.

3.5 Function Calls and Priorities

SSML programs may use par to evaluate multiple functions in parallel, ordered according to their
position in the par expression. For instance, the main function calls foo and bar in parallel at line 10
of Figure 6, with foo taking priority over bar. Single function calls are treated as unary parallel calls.
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Fig. 20. Implementation of leave, which deallocates an activation record and may return to its parent.

Our runtime does not directly support evaluating non-call expressions in parallel, such as the
parallel wait in line 2 of Figure 2. Instead, we transform these expressions to parallel function calls
using an SSML source-to-source translation. We recursively replace non-call parallel expressions
with calls to lifted top-level functions, where local variables that appear free in each expression
are passed as arguments to the lifted function. For instance, the sum function from Figure 2 is
translated to

_wait r = wait r // Lifted from sum

sum r1 r2 r =
par _wait r1 & _wait r2 ;
after sec 1, r ← deref r1 + deref r2

At a par call site, the parent calls each child’s enter function to allocate their activation records
(see Figure 14). These are passed to activate, which schedules those child processes for execution.

Deterministic concurrency was a key SSML design goal. We achieve it in part by mandating
that at each instant, par operands further to the left must evaluate before operands to the right. In
our formal semantics, this evaluation order was enforced using an evaluation context that always
awakens and checks the first branch of a par before the second branch. These wake-ups are waste-
ful, since most wait statements will stay suspended in most instants. Instead, when a reference is
written, we only schedule each process that is blocked waiting on that reference.

We force the scheduled processes to run in each instant in the order prescribed by semantics
by assigning a unique priority number to each active process. The scheduler then runs processes
in priority order. In the case of a single function call, the child simply inherits the priority of its
parent, which is unambiguous, because only one of them is ever running at once.

When multiple function calls are evaluated using par, we assign priority numbers in a hierar-
chical manner that subdivides the range of priority numbers allocated to the caller. Each process
has a priority–depth pair, (p,d) where p ≥ 2d , that indicates it owns priority numbers p through
p + 2d − 1. When a process calls k children, it assigns pairs (p,d ′), (p + 2d ′,d ′), (p + 2 · 2d ′,d ′), . . . ,
(p + (k − 1)2d ′,d ′), where d ′ = d − �log2 k�. The depth may also be thought of as the index of the
least significant bit in the priority.

For example, if a process has the pair (16, 4), then it owns priority numbers 16 through 16+16−
1 = 31 and calls four children, the children are given pairs (16, 2), (20, 2), (24, 2), and (28, 2). And
if the (24, 2) child in turn calls two children, then they would be given pairs (24, 1) and (26, 1). In
Figure 15, the depth and priority variables and related machinery dynamically compute the new
priority–depth pairs at the call site for foo and bar.

Our runtime system uses 32-bit unsigned integers (uint32_t) to represent priorities and 8-bit
unsigned integers (uint8_t) to represent depths. This provides four billion unique priority numbers,
although a pathological program could exhaust them.
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4 LANGUAGE RUNTIME IMPLEMENTATION

Our language runtime consists of a scheduler for executing a program’s threads during each in-
stant, a memory manager and allocator to provide programs with safe, dynamic memory, and
platform-specific code for interfacing with the program’s environment. In this section, we describe
the platform-agnostic scheduler and memory manager, which allow us to execute SSML programs
without considering any interactions with the external environment.

4.1 The Scheduler

The SSML runtime scheduler maintains two priority queues: the event queue, which holds refer-
ences scheduled to be updated, ordered according to their later_time fields, and the ready queue,
which holds activation records (functions) scheduled to run in the current instant, ordered by
increasing priority fields. We implement both as binary heaps whose maximum size can be deter-
mined if the program’s dynamic call graph can be analyzed statically.

Our runtime event queue corresponds to the event queue δ from our formal semantics. Mean-
while, the ready queue avoids unnecessary work for processes that do not need to resume. While
the S-Tick rule prescribes reducing every redex of the running program, including check expres-
sions that will immediately block again, the ready queue avoids “busy waiting” by maintaining
only the set of processes that will unblock and run in the current instant.

The scheduler exposes a tick function that runs the system for an instant. It does so in two phases:
performing all the reference updates queued for the instant and then running every process in the
ready queue in priority order.

In the first phase, performing an event consists of removing the reference at the front of the event
queue provided it is scheduled for the current instant now, updating its value and last_written
fields, and then adding each process waiting on the reference (held in its list of triggers) to the
ready queue if it is not already there. This phase ends when there are no pending events on the
queue for the current time instant. Note that each reference’s list of triggered processes is not
modified during this phase: The processes themselves are exclusively responsible for managing
their triggers.

In the second phase, the process with the lowest priority number is removed from the ready
queue and its step function invoked. The step function, in turn, may cause processes with equal
or higher priority numbers to be added to the ready queue, either through a call to activate (which
may schedule another process at the same priority) or through an assign call to a reference that
triggers other processes at higher priorities.

The scheduler will terminate unless one of the activated functions refuses to suspend. Functions
may contain unbounded recursion or loops that perform multiple iterations in a single instant, but
C does not guarantee that they terminate. However, infinite loops that always eventually suspend
work fine in SSML.

4.2 Memory Management

Our runtime system implements automatic garbage collection based on reference counting and
an allocator that mimics malloc and free in systems where an existing allocator is inadequate or
unavailable.

4.2.1 Reference-Counted Garbage Collection. The SSML runtime exposes reference counting
primitives new, dup, and drop to allocate, duplicate, and release heap objects. Objects are initial-
ized with a reference count of 1, which represents the number of live pointers to the object. The
reference count is incremented by dup and decremented by drop. When the reference count for an
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Fig. 21. The layout of all heap-managed objects; the encoding of the kind field, and the layout of algebraic
data types. The ref_count field holds the number of pointers to the object; the kind field indicates how the
rest of the object should be interpreted.

Fig. 22. Platform-specific handlers for the memory allocator.

object reaches 0, the object is freed, and drop is called on all objects it refers to. Our choice of a
reference counted heap was inspired by the Perceus algorithm [25].

The reference count is maintained in the object’s memory management header, shown in
Figure 21. The header is placed at the start of each heap object and also contains a kind field that
indicates how to interpret the rest of the object. When an object is freed, the memory manager
uses the kind field to determine where and how much to scan for heap pointers to child objects.

The SSML runtime recognizes several kinds of heap objects: (user-defined) ADTs, references,
and 64-bit model time values. These are enumerated in Figure 21 and dictate the interpretation of
each heap object. For instance, for user-defined algebraic data types, kind = ADT_K, the tag field
encodes the data constructor used to create the object, and fields indicates the number of value_t
elements in the field array.

Each kind of object has its own new function, which calls the allocator to obtain memory for
the object and initializes the ref_count and kind fields along with others depending on the kind.

The dup function takes a pointer to any kind of object and increases its reference count.
The drop function is the most complicated. It decrements the ref_count field and if it has reached

zero, consults the kind field to determine what children to drop, if any, before freeing the object.
For ADTs, drop recursively calls drop on each of its fields (whose number is given by fields). For
references, drop calls drop on its value and later_value fields (Figure 18).

4.2.2 Allocation. To ensure responsiveness and avoid fragmentation, the SSML runtime uses
an allocator that dispenses cells from one of several memory pools. Each memory pool is respon-
sible for allocating cells up to a certain size, and maintains a free list of available cells. Memory
is allocated from the smallest cell-size pool capable of accommodating the requested size. This
segregated-fits allocation scheme wastes some memory to ensure that the free list can be queried
in constant time.

The memory used by the SSM allocator is acquired from the operating system on demand so that
the distribution of space among the memory pools can dynamically adapt to the needs of the appli-
cation. To ensure platform independence, the allocator uses three platform-specific allocation han-
dler functions, listed in Figure 22. The allocator uses alloc_page to request a page of memory from
the operating system. These pages can be added to memory pools on demand or pre-allocated if the
allocator is given hints when it starts that indicate many impending allocations of a particular size.
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The number of memory pools is configured at compile time, and remains constant throughout
the execution of SSML programs. If the SSML program attempts to allocate memory larger than the
largest pool cell size, then the SSM allocator falls back to the system-provided alloc_mem handler,
which must be capable of allocating arbitrarily large ranges of memory or throw a fatal error.
Memory allocated by this handler is freed using the free_mem handler. The use of these handlers
is transparent to the SSML user program.

5 INTERFACING WITH THE REAL WORLD

Like other synchronous languages, SSML prescribes temporal behavior in terms of model time
and presents the fiction of an infinitely fast processor to ensure that the semantics of real-time
programs are independent of the actual platform speed. This isolation from the external environ-
ment is reflected in our runtime system’s platform-agnostic core (described in Section 4): tick has
no control over the physical time at which code is executed.

To enable meaningful execution within the real-world environment, the runtime includes
platform-specific drivers to manage interactions with that environment according to each plat-
form’s own capabilities and runtime model. For instance, the driver is responsible for calling tick
according to the passage of physical time, informed by platform-provided timers.

The driver is also responsible for punctually conveying data from and to peripheral devices via
input and output references, which are arguments passed to a program’s main function. An input
handler timestamps each input event before delivering it to the runtime event queue; each output
reference is given a concurrently running output process that waits for an update before emitting
the value to the environment.

In reality, the fiction of an infinitely fast processor can be maintained by a “fast-enough” proces-
sor always able to perform the computation needed in each instant before the arrival of the next.
However, whether a processor is “fast enough” depends on its speed, the program it is expected
to execute (e.g., its worst case execution time), and the rate at which environmental inputs arrive,
making it a difficult property to prove. We recognize that establishing schedulability is important,
but it remains a challenging aspect of our approach; we plan to tackle this problem in future work.
For the moment, our runtime system can report observed scheduling failures.

In this section, we describe the design considerations and implementation requirements com-
mon to all platforms’ drivers. We have implemented a driver for the Zephyr real-time operating
system, which allows us to run SSML programs on a wide range of embedded systems, along with
one for POSIX, which enables us to experiment on desktop workstations.

5.1 Timing and External Input

Calling tick advances model time (now) to that of the next event in the queue. We can run SSML
programs “in simulation” like any discrete-event model by repeatedly calling tick, without regard
for physical time. While this is useful for compiler testing, such simulations do not interact with
the real world as prescribed by the program.

Drivers leverage platform timing capabilities to implement real-time behavior. While timer APIs
differ vastly across platforms, running programs “in real time” is still straightforward, provided
some capability to sleep or block until a specified physical time (usually implemented using some
sort of free-running timer).

External inputs are gathered by concurrent interrupt service routines (ISRs) and ultimately
appear as updates to SSML input references. Handling these inputs complicates the tick loop, which
contends with two challenges. First, inputs may arrive at any point: asynchronously updating the
input reference in the ISR while tick is running may corrupt system state. Second, the tick loop
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Fig. 23. The SSML runtime’s input handling architecture.

must ensure that model time advances monotonically: It should only tick once the corresponding
physical time has passed to ensure that it has accounted for any possible inputs before that time.

Our solution adds an input queue to manage input events from the ISRs (i.e., distinct from the
scheduler’s event and ready queues) and a semaphore to wake up the (potentially sleeping) tick
loop thread. Figure 23 illustrates this input handling architecture. An ISR gathers an input, times-
tamps it, places it in the input queue, and posts to the semaphore. The tick loop sleeps by waiting
on this semaphore with an alarm scheduled to post when the sleep period is over. The tick loop
collects input events from the input queue, forwards them to the event queue, and calls the sched-
uler’s tick to run an instant.

Maintaining an input queue distinct from the scheduler’s event queue avoids excessive synchro-
nization costs. The input queue is loaded asynchronously by ISRs and emptied by the tick loop,
but it is a simple ring buffer that is easy to make thread-safe. By contrast, the scheduler event
queue is a priority queue to which events are added and sometimes removed out-of-order by the
tick loop and running SSML processes. However, because these run synchronously, the scheduler
event queue is never accessed asynchronously and does not need to be made thread-safe.

Figure 24 shows an input interrupt handler. It first records the system’s current physical time,
then attempts to enqueue an event with that timestamp and any new data from the peripheral
in the input queue: a ring buffer large enough to accommodate a modest backlog of input events
before having to drop new ones. Enqueue and dequeue operations are performed in-place via an
allocate/commit and peek/release protocol to minimize copying.

The ISR obtains an irq_lock, because recording the current system time as quickly as possible
and allocating space in the input queue is critical to ensure enqueued input events appear with
non-decreasing timestamps, at the cost of temporarily disabling nested interrupts. Higher-priority
interrupts may occur while processing a lower-priority interrupt, but only after the timestamp of
the lower priority interrupt has been captured and its position in the queue guaranteed.

Figure 25 shows the tick loop, which waits on an RTOS-provided semaphore (sem) that is posted
by an ISR from either a peripheral or the system clock. At each iteration of the tick loop, the runtime
checks the input queue for events to schedule in the event queue. Events in the input queue will
be in increasing order, since we assume the system timer advances monotonically. Pending inputs
are forwarded. However, if the model time of the SSML program is running behind physical time
when some external input is received, that is, if input−>time > mtime, or if there is no pending
input event, then the runtime executes the SSML program by calling tick. Finally, if there are
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Fig. 24. The type of input queue events and a peripheral interrupt service routine. Each peripheral has a
device-specific ISR like this one.

neither input events to process nor internal events ready to execute, then the main thread goes to
sleep, blocking on a semaphore until either its timer expires or some fresh input appears. Upon
waking, the tick loop cancels the timer ISR and resets the semaphore to prevent stale posts on the
semaphore lingering into the following loop iterations.

5.2 Handling External Outputs

Just like inputs, output peripherals are bound to regular SSML references; writes to those references
are sent to the environment as output. Under the hood, writes to such references trigger some
system-provided function that actually transmits the output to the peripheral.

To determine when to call such output functions, we reuse our runtime’s sensitivity machinery
to determine when an output reference is updated. We maintain output handler processes that
remain active and sensitized to the bound output reference. Those processes encapsulate commu-
nication with each output peripheral, in SSML handler functions that look like

handle out =
while True do

wait out ;
peripheral_output (deref out)

Here, peripheral_output represents the platform- and peripheral-specific work the output han-
dler must do to forward the value of out to the environment. Adding a new peripheral amounts to
defining a new output handler function according to this template. We plan to add a foreign func-
tion interface to SSML so that output handlers can be directly implemented in SSML code like this.

The runtime scheduler runs output handlers last in each instant so that they are sensitive to
instantaneous assignments by all processes. In SSML, these processes may be thought of as sched-
uled parallel to the main process by some “real” entry point, _start, e.g.,

main led1 led2 = ...

_start led1 led2 =
par main led1 led2

& handle led1
& handle led2
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Fig. 25. The runtime tick loop, which gathers events from the input queue, runs tick to advance model time,
then sleeps until the next scheduled event or an interrupt.

We chose to implement output handlers as low-priority processes, because it ensures a sound
real-world interpretation for logically simultaneous updates. A program may assign a reference
multiple times in a single instant,for example, turning a light-emitting diode (LED) on and off
“at the same time.” The zero-time model of execution means such multiple writes occur simulta-
neously, which is meaningless to real-world peripherals; handling each write immediately may
produce flickering or glitch behavior that should not be externally visible. By only responding to
the last write of any instant, our output handlers ensure that peripherals are updated at most once
each instant with only its “stabilized” value.

A shortcoming of our approach is that outputs do not appear in the real-world until the end of
computing an instant. SSML’s semantics say that an instant executes in zero model time, but in
practice any computation takes physical time. A sporadically intensive workload may lead to vary-
ing output latency, causing jitter that may be unacceptable for real-time workloads. An alternative
is to schedule output handlers before the main process, e.g.,

main led1 led2 = ...

_start led1 led2 =
par handle led1

& handle led2
& main led1 led2
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Fig. 26. A frequency counter program.

Table 1. Frequency Counter Measurements

Input frequency Count
6 kHz 12,000 ± 0 µs
7 14,000 ± 1
8 16,000 ± 1
9 16,000 ± 1
10 20,000 ± 1
11 22,000 ± 1
12 24,000 ± 1
13 26,000 ± 1
14 28,000 ± 1
15 (events dropped)

The measured count is twice the input frequency,
because it counts both the rising and falling edges
of the input signal.

Assuming that output handlers are reasonably efficient, this alternative ensures that output
effects are emitted punctually without being delayed by long-running instants. However, this ap-
proach precludes effectful instantaneous assignments, which we want SSML to support for seman-
tic consistency.

We plan to explore having the user specify how output handlers should be scheduled relative
to other processes, so that users can control the tradeoff between the punctuality and expressive-
ness of output references for their application. Because these handlers are implemented as regular
processes, this endeavor requires no additional runtime support, so we are limited only by the
expressiveness of our language. In some cases, it may be possible for the compiler or runtime to
infer whether an output handler’s priority can be safely boosted without affecting the behavior of
the program.

6 EVALUATION

We tested the performance of our Zephyr-targeted runtime system by subjecting SSML programs
to varying loads. We performed these experiments on a Nordic Semiconductor NRF52840-DK
board, which has a 64-MHz Cortex-M4 processor, 256 kB random-access memory (RAM), and
1 MHz flash; it is configured to use an off-chip 16-MHz crystal oscillator as its physical time base.
To produce high input loads, we connected a signal generator to the GPIO pin mapped to one of
the NRF52840’s buttons. We measured the output response using an oscilloscope connected to the
GPIO pin mapped to one of the NRF52840’s LEDs.

6.1 Frequency Counter

To assess our implementation’s resilience to high input load, we tested the frequency counter
shown in Figure 26. This program measures the frequency of button presses by counting the num-
ber of input events each second. The reported count is double the frequency, corresponding to
the two input events of a square wave. For benchmarking purposes, we inserted a print statement
in the generated C code to report the frequency; the program alternates between counting and
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Fig. 27. The button-to-blink program.

Table 2. Latency and Jitter Measurements on the
Button-to-blink Program (Figure 27)

Frequency Latency Jitter
2 kHz 60.0 µs 0.7 µs
4 60.6 0.7
6 49.7 0.5
8 52.1 13.1
10 47.3 34.0
12 45.6 24.0

reporting to ensure that the overhead of reporting the frequency does not interfere with the fre-
quency counting at high loads.

The reference button is bound to switch 0 on the NRF52840-DK; we connected a function gen-
erator to the corresponding GPIO pin and generated pulses at various frequencies. Our results are
shown in Table 1. We found that our frequency counter was capable of measuring events of up to
29 kHz (input frequency of 14.5 kHz), with error within 2 Hz. Above this, the input event queue
filled up faster than the counter was able to empty it, leading to events being dropped and the
program thrashing. However, the frequency counter recovered gracefully from such an overload
situation after we lowered the input frequency below 14 kHz.

6.2 Button-to-blink

To better understand how the system behaves without any significant computational load, we
evaluated a “button-to-blink” program, shown in Figure 27. This program immediately lights an
LED when a button is pressed, and turns the LED off when the button is released. We schedule
the LED handler after the main b2b program so the instantaneous assignment is sent to the LED
at the end of the instant.

The “instantaneous” assignment in b2b incurs a practically avoidable but theoretically signifi-
cant amount of latency, which we call the at-rest input latency, δr . This value represents the dura-
tion between the system waking from sleep and responding to an external input. From profiling
our button-to-blink program, we found that δr for our NRF52840-DK is approximately 60 µs.

If the system continuously receives inputs at a frequency above 1/δr , then the system will not
be able to process one input before receiving the next, making δr a significant number. As the
system falls farther behind physical time, its behavior degrades to that of an asynchronous system
running as fast as it can, without the temporal behavior from the underlying SSML program.

A related metric is the in-flight input latency, δf , which is the time it takes for the system to
respond to external input when it is already busy. When events arrive separated by less than δf ,
the input queue will be populated with new events by the time the main tick loop thread checks it
again, meaning it can resume ticking without putting itself to sleep. δf is shorter than δr , because
the time spent going to sleep and waking back up is eliminated. We experimentally determined
that δf for our NRF52840-DK running b2b is approximately 45 µs.

Sparse bursts of events do not necessarily cause the system to overload, provided the system
is given a chance to catch up between bursts. The system may even be able to keep up if it is
consistently stimulated with a period between δr and δf . As shown in Table 2, the “button-to-
blink” program was able to sustain activity when stimulated by a pulse generator with frequencies
of 12 kHz; beyond 12 kHz, the program begins to thrash and drop input events. However, when
the delay between successive events is less than δr , the computation time per instant becomes less
predictable, even as the system remains responsive. In Table 2, this manifests in increased jitter at
input frequencies above 8 kHz, at which a square wave has a half-period of 62.5 µs.
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Fig. 28. Timeline of a single button press of the “button-to-blink” program from Figure 27, reconstructed
from profiling codes emitted on GPIO pins. All time values are measured in µs.

To determine the breakdown of our system’s δr of 60 µs, we profiled b2b during a single button
press and obtained the timeline shown in Figure 28. We did so by emitting 4-bit codes on unused
GPIO pins at certain points in the execution of our runtime system and recording them with a
logic analyzer. We then analyzed the recorded data to determine how long the system is spending
between these events. Although each GPIO write takes 60 ns, this duration is negligible compared
to other latencies. We find that of the overall latency, 24.3 µs is due to Zephyr’s own ISR and process
scheduling facilities. A further 5.8 µs is introduced by Zephyr’s semaphore implementation, when
we call sem_post from the ISR to wake up the tick loop thread. The δr of 60 µs measured here is
consistent with the timing recorded in Table 2.

6.3 Signal Generator

We also measured the highest frequency (shortest period) a signal generator program such as
Figure 1 could generate. For the purposes of evaluation, we used a modified version that adjusted
the half-period hperiod in linear increments of 2 µs. We found that it could reliably generate sig-
nals with a 76 µs half-period (approaching δf ), corresponding to a frequency of about 6.6 kHz.
Even at this frequency, our signal generator exhibited less than 500 ns of jitter, the minimum we
could measure with our oscilloscope. At half-periods between 70 and 76 µs, we observed significant
degradation in signal accuracy and consistency: the output signal’s half-period fluctuated between
60.2 µs and 83.4 µs. At even shorter half-periods, the system ceased to output any signal while
it was computationally overwhelmed. However, the signal generator was able to recover with-
out a reset when we increased the half-period back above the 76 µs threshold: the system would
output a brief, high-frequency burst as it caught up with physical time, before resuming correct
behavior.

7 RELATED WORK

7.1 Discrete-event Languages

The Lingua Franca (LF) coordination language [17, 18] has many parallels with SSML. LF is in-
spired by the same foundations of discrete-event simulation [15] and the Ptides programming
model [31, 32] as SSML; its execution model also uses two priority queues to schedule pend-
ing events and computation, sparing tick the need to run in every instant. In LF, locally stateful
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“reactors” (like SSML processes) send each other discrete, timestamped events via “ports” (like
SSML channels).

The key difference is that LF demands and utilizes far more knowledge of the structure and
behavior of its systems, trading flexibility for analyzability. LF fixes the topology of all reactors at
compile time, statically determining reactor execution order based on explicit data dependencies
and insisting on minimum reactor delay times to reject causality violations. By contrast, SSML
allows processes to spawn other processes at runtime, forming a dynamic process tree where the
execution order is computed using the priorities obtained from parallel function call sites.

Verilog [13] and VHDL [28] inspired some aspects of SSM, while also warning us of nonde-
terministic pitfalls. Both are imperative discrete-event simulation languages for modeling digital
hardware, and use variables that convey events (signals in VHDL; nets and regs in Verilog). SSML’s
assignment and after parallel Verilog’s blocking and non-blocking assignments.

VHDL exposes far more of the discrete-event machinery to the user, e.g., allowing her to control
the filtering of closely spaced events (transport vs. inertial delay), test for the presence of events,
and even check for the absence of events over a prescribed period of time.

We wanted SSML to have the same power as VHDL’s wait, which can wait for three things: an
event on a signal (like SSML); a condition (e.g., wait until CLK ′event and CLK = ‘1’); and a period
of time (e.g., wait for 10 ns). This felt too rich for an SSML primitive, so we adopted the approach of
the FreeHDL compiler [22], whose runtime can only wait on a set of signals. FreeHDL implements
VHDL’s wait for conditions by generating code that alternates between checking the condition
and waiting for an event on any of the condition’s input signals. Waiting for a timeout schedules
an event on a (synthesized) timeout signal then waits on that signal (Figure 5).

A key advantage of SSM is its use of a separate semantics for dealing with events in a single
instant, unlike traditional discrete-event models. SSM could be modeled with superdense time [14]
where the timestamp at which each process executes also includes its priority. This approach gives
SSM its determinism and sidesteps such infelicities as VHDL’s delta cycles [28].

7.2 Synchronous Languages

SSM’s intra-instant semantics are rooted in the synchronous languages Lustre, Esterel, and Signal,
which gave a formal foundation for the semantics of synchronous computing with deterministic
concurrency [4]. These languages do not support dynamic process creation, runtime scheduling,
or recursion, which allows each program to be compiled to a single tick function that evaluates
the whole system for an instant. The runtime simply calls this tick function in a periodic loop.
This “heartbeat” model works well for continuously evolving systems, but ticks unnecessarily for
reactive applications with sparse, irregular workloads. SSM assumes that events are sparse, so its
runtime only calls tick when needed; in most instants, no computation takes place.

While Lustre and Signal are dataflow languages, Esterel is imperative like SSML: Esterel pro-
grams describe processes by their control flow [5]. Yet Esterel institutes a single-value-per-instant
rule for signal values (signal coherence), and insists that all readers of a signal execute after writers,
so the execution order of parallel processes is determined by their implicit causality. Yet causality
analysis is difficult to explain and implement [23], and rejects programs with read-modify-write
behavior (e.g., Figure 6). Sequentially constructive concurrency [27, 30] relaxes signal coherence
to allow signals with multiple values per instant, provided those values are totally ordered by ex-
plicit sequencing, but is even more complex. SSML uses a simpler syntactic total order from par

expressions, foregoing the need for causality analyses.
Reactive C takes a different approach to maintain causality while avoiding the overhead of

causality analysis [7]. Reactions to the absence of signals are delayed by one instant, ensuring
causality by construction. ReactiveML builds on this insight to incorporate synchronicity and
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valued signals in an ML-like language with first-class functions and ADTs [19, 20]. ReactiveML
also delays processes waiting on valued signals by one instant. In contrast, SSML’s sparse model
of time lacks the notion of a “next instant,” and its semantics do not insist on this notion of causal-
ity. In SSML, processes may check whether a reference r has been assigned in the current instant
using written r == now.

We were also inspired by Boussinot’s ordering of concurrent routines to achieve determinism,
at the heart of FairThreads [8] and FunLoft [9]. However, Boussinot’s execution strategy searches
for Esterel-like fixed-points, using a round-robin cooperative scheduler that repeatedly evaluates
concurrent routines in order until they quiesce. For example, in SSML, par foo & bar runs foo then
bar once each in an instant; Boussinot would also run foo then bar, but allows foo and bar to
resume (e.g., if one routine wrote to a variable on which the other was blocked). This repeats
until each routine either terminates or suspends on an untouched variable. Boussinot’s iterations
enable instantaneous bidirectional communication among processes, but their execution time is
difficult to bound. Also, confusingly, the lexicographic order of concurrent routines still matters
in Boussinot’s world. SSML adopts a more rigid, faster policy that is simpler to explain.

Hanxleden, Bourke, Girault, and others [6, 29] show how giving an Esterel program the ability
to schedule when it should be awakened after the end of each tick enables far richer temporal be-
havior. Their proposal, however, leaves the subtle calculation of this single number to the program
itself. Their solution [29] effectively implements a crude event queue in Esterel where, at each tick,
each pending delay action reports its desired wake-up time to a global signal that computes the
earliest event and reports that to an external timer. SSML uses a much more efficient priority queue
that avoids each delay having to do something at each tick.

Both Céu and PRET-C employ many of the same ideas as SSML to overcome Esterel’s complex-
ity [1, 26]. Both languages determine the execution order of parallel branches by their syntactic
order, though Céu discourages the use of non-commutative par branches. According to this or-
der, earlier writes are overwritten by subsequent writes in the same instant, like SSML. Both also
empower the programmer to program in terms of physical time: Céu supports blocking for a con-
crete duration (e.g., await 2ms), while PRET-C leverages worst-case reaction time analysis and
precision-timed hardware guarantees to tell the programmer the physical duration of each logi-
cal tick. However, Céu and PRET-C are statically scheduled and memory-bounded; though these
are attractive properties for real-time applications, they also come at the cost of language expres-
siveness. SSML strikes a different balance between efficiency and expressive power to support
languages features such as recursion and heap allocation.

8 FUTURE WORK AND CONCLUSIONS

We presented the Sparse Synchronous Model via a language with parallel function calls and block-
ing waits on writes to shared references, which may be scheduled in the future to provide temporal
control. We discussed the semantics of our model and presented an efficient runtime system with
two priority queues: one for events and the other for ready-to-run routines. The result is a deter-
ministic formalism that supports precise timing specification, concurrency, and recursion.

Our end goal is a user-friendly language built on SSM’s semantics; the SSML language we
present here is a step toward that. We are extending SSML into a richer functional language with
arrays, first-class functions, and type classes. A foreign function interface will be useful for sup-
porting peripherals in the embedded applications we will write; robust compile-time facilities and
domain-specific optimizations will help our programs run efficiently on low-powered hardware.

We will continue to improve our runtime’s reliability and responsiveness. Our current tick
loop only advances model time once the corresponding physical time has passed, in case of
then-unknown real-time inputs that may interrupt the passage of model time. This conservative
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approach means that each instant is always completed slightly late. We intend to experiment with
distributed implementation techniques proposed for Ptides, and execute instants early when it
is safe to do so [33]. Our use of the depth value limits the call depth of par expressions with
two or more operands; to overcome this limitation, we plan to implement Dietz and Sleator’s
list-range relabeling algorithm [3, 11] as a solution to the order-maintenance problem. We hope
to statically determine when we can relax SSM’s strict child-ordering rules without introducing
nondeterminism—perhaps using Rust-like ownership types [21]—to enable parallelism.

The temporal semantics specified by SSM programs mean that they convey a very precise model
of when a system is active or idle. In particular, idle periods are abundant for the sparse work-
loads we envision. We believe our memory manager can exploit this knowledge and defer certain
routines to idle cycles. For example, dropping the last remaining reference to a linked list entails
iterating through the entire list and dropping every single node. When the linked list is long, doing
so wastes precious cycles when there may be more urgent tasks in that instant. A lazier approach
that defers memory management to idle periods may lead to better responsiveness, without much
of the guesswork involved in traditional, non-synchronous memory management.
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