
Columbia University

EECS 4340: Computer Hardware Design
Unit 3: Design Building Blocks

Prof. Simha Sethumadhavan

DRAM Illustrations from Memory Systems by Jacob, Ng, Wang

Columbia University

Hardware Building Blocks I: Logic

•  Math units
•  Simple fixed point, floating point arithmetic units

•  Complex trigonometric or exponentiation units

•  Decoders
•  N input wires

•  M output wires, M > N

•  Encoders
•  N input wires

•  M output wires, M < N, e.g., first one detector

Computer Hardware Design

Decoders

Encoders

Columbia University

Designware Components

•  dwbb_quickref.pdf (on courseworks)
•  Do not distribute

Computer Hardware Design

Columbia University

Hardware Building Blocks II: Memory

•  Simple Register: Flop/latch groups

•  Random Access Memory
•  Data = RAM[Index]

•  Parameters: Depth, Width, Portage

•  Content Addressable Memory
•  Index = CAM [Data]

•  Parameters: Depth, Width, Portage

•  Operations supported (Partial Search, R/W)

•  Queues
•  Data = FIFO[oldest] or Data = LIFO[youngest]

Computer Hardware Design

CAM

RAM D
ep

th

Width

Width

FF FF FF

Queue

Read
Write
Input
Index

D
ep

th

Read
Write
Input

Search

Data

Columbia University

Building Blocks III : Communication

•  Broadcast (Busses)
•  Message is sent to all clients

•  Only one poster at any time

•  Does not scale to large number of nodes

•  Point-to-Point (Networks)
•  Message is sent to one node

•  Higher aggregate bandwidth

•  De rigueur in hardware design

Computer Hardware Design

Columbia University

Building Blocks IV: Controllers

•  Pipeline controllers
•  Manages flow of data through pipeline regs

•  Synthesized as random logic

•  Synchronizer
•  Chips have multiple clock domains

•  Handle data xfer between clock domains

•  Memory, I/O controllers
•  Fairly complex blocks, e.g., DRAM controller

•  Often procured as Soft-IP blocks

Computer Hardware Design

Synchronizer

CLK #1

CLK #2

Pipeline Controllers

“Analog”
Controllers
(memory,
I/O etc.)

Columbia University

Rest of this Unit

More depth:

•  Pipelining/Pipeline Controllers

•  SRAM

•  DRAM

•  Network on Chip

Computer Hardware Design

Columbia University

Pipelining Basics

Computer Hardware Design

Stage 1

L1

Stage 2

L2

Stage 3

L3

tcomb toverhead

tclock

Clock Frequency = 1/(tcomb +tclock + toverhead)

Module S1S2S3

Logic

Unpipleined

Clock Frequency = 1/(N*tcomb +tclock + toverhead)

N*tcomb toverhead

tclock

Columbia University

Pipelining Design Choices

Computer Hardware Design

L1 L2 L3

Consider:

L1 L2 L3

ARBITER
LARGE, EXPENSIVE

SHARED RESOURCE
(only one pipeline can access)

How should you orchestrate access to the shared resource?

Columbia University

Pipelining Design Choices

Computer Hardware Design

L1 L2 L3

Consider:

L1 L2 L3

ARBITER
LARGE, EXPENSIVE

SHARED RESOURCE
(only one pipeline can access)

Strategy1: GLOBAL STALL

L1 L2 L3

L1 L2 L3

ARBITER

Global Stall

Global Stall

Pros: Intellectually Easy!

Cons: SLOW!
•  Delay α Length of wire
•  α Fanout

Columbia University

Pipelining Design Choices

Computer Hardware Design

L1 L2 L3

Consider:

L1 L2 L3

ARBITER
LARGE, EXPENSIVE

SHARED RESOURCE
(only one pipeline can access)

Strategy 2: PIPELINED STALL

L1 L2 L3

L1 L2 L3

ARBITER

Pipelined Stall

Pipelined Stall

Pros: Fast!

Cons: Area
•  One cycle delay for stalls => one
additional latch per stage!
•  More complex arbitration

Columbia University

Space-Time Diagram

Computer Architecture Lab

Stage Cycle N Cycle N + 1 Cycle N + 3 Cycle N + 4

K A (Stall due to ARB)

K – 1 B

K – 2 C

K – 3 D

K – 4 E

Columbia University

Space-Time Diagram

Computer Architecture Lab

Stage Cycle N Cycle N + 1 Cycle N + 3 Cycle N + 4

K A (Stall due to ARB)

K – 1 B Stall reached
K-1

K – 2 C

K – 3 D

K – 4 E

Columbia University

Space-Time Diagram

Computer Architecture Lab

Stage Cycle N Cycle N + 1 Cycle N + 3 Cycle N + 4

K A (Stall due to ARB) AB

K – 1 Stall reached
K-1; C

K – 2 D

K – 3 E

K – 4

Columbia University

Space-Time Diagram

Computer Architecture Lab

Stage Cycle N Cycle N + 1 Cycle N + 3 Cycle N + 4

K A (Stall due to ARB) AB (Stall) AB (Stall) B (unstall)

K – 1 Stall reached
K-1;

CD (Stall) CD (Stall)

K – 2 Stall reached
K-2. E

K – 3

K – 4

Columbia University

Space-Time Diagram

Computer Architecture Lab

Stage Cycle N Cycle N +
1 Cycle N + 3 Cycle N + 4 Cycle N+5

K A (Stall due to
ARB)

AB (Stall) AB (Stall) B (unstall) C

K – 1 Stall
reached
K-1;

CD (Stall) D(Stall) (unstall)

K – 2 Stall
reached
K-2. E

K – 3

K – 4

Columbia University

Pipelining Design Choices

Computer Hardware Design

L1 L2 L3

Consider:

L1 L2 L3

ARBITER
LARGE, EXPENSIVE

SHARED RESOURCE
(only one pipeline can access)

Strategy 3: OVERFLOW BUFFERS AT THE END

L1 L2 L3
OVERFLOW
BUFFERS ARBITER

Pros: Very fast, useful when
pipelines are self-throttling
Cons:
•  Area!
•  Complex arbitration logic at the arb.

Columbia University

Generic Pipeline Module

Computer Architecture Lab

Stall
Mgmt.

Flush
Mgmt.

Logic Overflow
Slot

Regular
Slot

Stall

Reset and
Other pipeline
flush condtions

Inputs

Stall
Output

Outputs

Stall
input

Columbia University

Introduction to Memories

•  Von-neumann model
•  “Instructions are data”

•  Memories are primary determiners of performance
•  Bandwidth

•  Latency

Computer Architecture Lab

Compute
Units Memory Instructions

Data

Columbia University

Memory Hierarchies

•  Invented to ameliorate some memory system issues

•  A fantastic example of how architectures can address
technology limitations

Computer Hardware Design

SRAM

DRAM

Hard Disk

Speed Size Cost

Columbia University

Types of Memories

Computer Hardware Design

Memory Arrays

Random Access Memory Serial Access Memory Content Addressable Memory
(CAM)

Read/Write Memory
(RAM)

(Volatile)

Read Only Memory
(ROM)

(Nonvolatile)

Static RAM
(SRAM)

Dynamic RAM
(DRAM)

Shift Registers Queues

First In
First Out
(FIFO)

Last In
First Out
(LIFO)

Serial In
Parallel Out

(SIPO)

Parallel In
Serial Out

(PISO)

Mask ROM Programmable
ROM

(PROM)

Erasable
Programmable

ROM
(EPROM)

Electrically
Erasable

Programmable
ROM

(EEPROM)

Flash ROM

Columbia University

Memory

Computer Hardware Design

ONE ZERO

Columbia University

D Latch

•  When CLK = 1, latch is transparent
•  D flows through to Q like a buffer

•  When CLK = 0, the latch is opaque
•  Q holds its old value independent of D

•  a.k.a. transparent latch or level-sensitive latch

23

CLK

D Q

La
tc
h D

CLK

Q

Columbia University

D Latch Design

•  Multiplexer chooses D or old Q

24

1

0

D

CLK

Q
CLK

CLKCLK

CLK

DQ Q

Q

Columbia University

D Latch Operation

CLK = 1

D Q

Q

CLK = 0

D Q

Q

D

CLK

Q

25

Columbia University

D Flip-flop

•  When CLK rises, D is copied to Q

•  At all other times, Q holds its value

•  a.k.a. positive edge-triggered flip-flop, master-slave
flip-flop

26

Fl
op

CLK

D Q

D

CLK

Q

Columbia University

D Flip-flop Design

•  Built from master and slave D latches

27

QM
CLK

CLKCLK

CLK

Q

CLK

CLK

CLK

CLK

D

La
tc
h

La
tc
h

D Q
QM

CLK

CLK

Columbia University

D Flip-flop Operation

CLK = 1

D

CLK = 0

Q

D

QM

QM
Q

D

CLK

Q
28

Columbia University

Enable

•  Enable: ignore clock when en = 0
•  Mux: increase latch D-Q delay

29

D Q

La
tc

h

D Q

en

en

φ

φ
La

tc
hD

Q

φ

0

1

en

La
tc

h

D Q

φ en

D
Q

φ

0

1

en
D Q

φ en

Fl
op

Fl
op

Fl
op

Symbol Multiplexer Design Clock Gating Design

Columbia University

Reset

•  Force output low when reset asserted

•  Synchronous vs. asynchronous

30

D

φ

φ

φ

φ

Q

Q
φ

φ

φ

φ

reset

D

φ

φ
φ

φ

φ

φ

Qφ

φ

D
reset

φ

φ

Q
φ

φ

D
reset

reset

φ

φ

reset

S
ynchronous R

eset
A

synchronous R
eset

S
ym

bol Fl
opD Q

La
tc

h

D Q

reset reset

φ φ

φ

φ

Q

reset

Columbia University

Building Small Memories

•  We have done this already

•  Latch vs Flip Flop tradeoffs
•  Count number of transistors

•  Examine this tradeoff in your next homework

Computer Hardware Design

Columbia University

SRAMs

•  Operations
•  Reading/Writing

•  Interfacing SRAMs into your design
•  Synthesis

Computer Architecture Lab

Columbia University

SRAM Abstract View

Computer Hardware Design

SRAM ADDRESS
VALUE

DEPTH = Number of Words

WIDTH = WORD SIZE

READ

WRITE

CLOCK

POWER

Columbia University

SRAM Implementation

Computer Hardware Design
row

 decoder

column
decoder

n

n-k
k

2m bits

column
circuitry

bitline conditioning

memory cells:
2n-k rows x
2m+k columns

bitlines

wordlines

OUTPUTS

IN
PU

TS

Columbia University

Bistable CMOS

Computer Hardware Design

ONE ZERO ZERO
ONE

Columbia University

The “6T” - SRAM CELL

•  6T SRAM Cell

•  Used in most commercial chips
•  Data stored in cross-coupled inverters

•  Read:
•  Precharge BL, BLB (Bit LINE, Bit LINE BAR)
•  Raise WL (Wordline)

•  Write:
•  Drive data onto BIT, BLB
•  Raise WL

Computer Architecture Lab

Columbia University

SRAM Read

•  Precharge both bitlines high

•  Then turn on wordline

•  One of the two bitlines will be pulled down by the cell

•  Ex: A = 0, A_b = 1
•  bit discharges, bit_b stays high

•  But A bumps up slightly

•  Read stability
•  A must not flip

•  N1 >> N2

37

bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word
0.0

0.5

1.0

1.5

0 100 200 300 400 500 600
time (ps)

word bit

A

A_b bit_b

Columbia University

SRAM Write

•  Drive one bitline high, the other low

•  Then turn on wordline

•  Bitlines overpower cell with new value

•  Ex: A = 0, A_b = 1, bit = 1, bit_b = 0
•  Force A_b low, then A rises high

•  Writability
•  Must overpower feedback inverter

•  N2 >> P1

38

time (ps)

word

A

A_b

bit_b

0.0

0.5

1.0

1.5

0 100 200 300 400 500 600 700

bit bit_b

N1

N2
P1

A

P2

N3

N4

A_b

word

Columbia University

SRAM Sizing

•  High bitlines must not overpower inverters during
reads

•  But low bitlines must write new value into cell

39

bit bit_b

 med

A

weak

strong

med

A_b

word

Columbia University

Decoders

•  n:2n decoder consists of 2n n-input AND gates
•  One needed for each row of memory

•  Naïve decoding requires large fan-in AND gates
•  Also gates must be pitch matched with SRAM logic

40

Columbia University

Large Decoders

•  For n > 4, NAND gates become slow
•  Break large gates into multiple smaller gates

41

word0

word1

word2

word3

word15

A0A1A2A3

Columbia University

Predecoding

•  Many of these gates are redundant
•  Factor out common

 gates into predecoder

•  Saves area

42

A0

A1

A2

A3

word1

word2

word3

word15

word0

1 of 4 hot
predecoded lines

predecoders

Columbia University

Timing

•  Read timing
•  Clock to address delay

•  Row decode time

•  Row address driver time

•  Bitline sense time

•  Setup time to capture data on to latch

•  Write timing
•  Usually faster because bit lines are actively driven

Computer Hardware Design

Columbia University

Drawbacks of Monolithic SRAMS

•  As number of SRAM cells increases, the number of
transistors increase, increasing the total capacitance
and therefore the resulting delay and power increase

•  Increasing number of cells results in physical
lengthening of the SRAM array, increasing the
wordline wire length and the wiring capacitance

•  More power in the bitlines is wasted each cycle
because more and more columns are activated by a
single word line even though a subset of these
columns are activated.

Computer Hardware Design

Columbia University

Banking SRAMs

•  Split the large array into small subarrays or banks

•  Tradeoffs
•  Additional area overhead for sensing and peripheral circuits

•  Better speed

•  Divided wordline Architecture
•  Predecoding

•  Global wordline decoding

•  Local wordline decoding

•  Additional optimization – divided bitlines

Computer Hardware Design

Columbia University 46

Multiple Ports

•  We have considered single-ported SRAM
•  One read or one write on each cycle

•  Multiported SRAM are needed in several cases
Examples:
•  Multicycle MIPS must read two sources or write a result on

some cycles

•  Pipelined MIPS must read two sources and write a third result
each cycle

•  Superscalar MIPS must read and write many sources and
results each cycle

Columbia University 47

Dual-Ported SRAM

•  Simple dual-ported SRAM
•  Two independent single-ended reads

•  Or one differential write

•  Do two reads and one write by time multiplexing
•  Read during ph1, write during ph2

bit bit_b

wordB
wordA

Columbia University 48

Multi-Ported SRAM

•  Adding more access transistors hurts read stability

•  Multiported SRAM isolates reads from state node

•  Single-ended bitlines save area

Columbia University

Microarchitectural Alternatives

•  Banking

•  Replication

Computer Hardware Design

Columbia University

In this class

•  Step 1: Try to use SRAM macros
•  /proj/castl/development/synopsys/SAED_EDK90nm/Memories/

doc/databook/Memories_Rev1_6_2009_11_30.pdf

•  Please do not e-mail, distribute or post online

•  Step 2: Build small memories (1K bits) using flip-flops

•  Step 3: Use memory compiler for larger non-standard
sizes (instructions provided before project)

Computer Hardware Design

Columbia University

DRAM Reference

Computer Hardware Design

Reference Chapters:

Chapter 8 (353 – 376)
Chapter 10 (409 - 424)
Chapter 11 (425 - 456

Or listen to lectures and take notes

Columbia University

DRAM: Basic Storage Cell

Computer Hardware Design

Columbia University

DRAM Cell Implementations

Computer Hardware Design

Trench
Stacked

Columbia University

DRAM Cell Implementations

Computer Hardware Design

Columbia University

DRAM Array

Computer Hardware Design

Columbia University

Bitlines with Sense Amps

Computer Hardware Design

Columbia University

Read Operation

Computer Hardware Design

Columbia University

Timing of Reads

Computer Hardware Design

Columbia University

Timing of Writes

Computer Hardware Design

Columbia University

DRAM System Organization

Computer Hardware Design

Columbia University

SDRAM Device Internals

Computer Hardware Design

Columbia University

More Nomenclature

Computer Hardware Design

Columbia University

Example Address Mapping

Computer Hardware Design

Columbia University

Command and Data Movement

Computer Hardware Design

Columbia University

Timing: Row Access Command

Computer Hardware Design

Columbia University

Timing: Column-Read Command

Computer Hardware Design

Columbia University

Protocols: Column-Write Command

Computer Hardware Design

Columbia University

Timing: Row Precharge Command

Computer Hardware Design

Columbia University

One Read Cycle

Computer Hardware Design

Columbia University

One Write Cycle

Computer Hardware Design

Columbia University

Common Values for DDR2/DDR3

Computer Hardware Design

SOURCE:

Krishna T. Malladi, Benjamin C. Lee, Frank A. Nothaft, Christos Kozyrakis,
Karthika Periyathambi, and Mark Horowitz. 2012. Towards energy-
proportional datacenter memory with mobile DRAM. SIGARCH Comput.
Archit. News 40, 3 (June 2012), 37-48. DOI=10.1145/2366231.2337164
http://doi.acm.org/10.1145/2366231.2337164

For more information refer to Micron or Samsung
Datasheets. Uploaded to class website.

Columbia University

Multiple Command Timing

Computer Hardware Design

Columbia University

Consecutive Rds to Same Rank

Computer Hardware Design

Columbia University

Consecutive Rds: Same Bank, Diff Row

Computer Hardware Design

Worst Case

Columbia University

Consecutive Rds: Same Bank, Diff Row

Computer Hardware Design

Best Case

Columbia University

Consecutive Rd’s to Diff Banks w/ Conflict

Computer Hardware Design

w/o command reordering

Columbia University

Consecutive Rd’s to Diff Banks w/ Conflict

Computer Hardware Design

w/ command reordering

Columbia University

Consecutive Col Rds to Diff Ranks

Computer Hardware Design

SDRAM: RTRs = 0
DDRx = non-zero

Columbia University

Consecutive Col-WRs to Diff Ranks

Computer Hardware Design

Columbia University

On your Own

Computer Hardware Design

Columbia University

Consecutive WR Reqs: Bank Conflicts

Computer Hardware Design

Columbia University

WR Req. Following Rd. Req: Open Banks

Computer Hardware Design

Columbia University

RD following WR: Same Rank, Open Banks

Computer Hardware Design

Columbia University

RD Following WR to Diff Ranks, Open
Banks

Computer Hardware Design

Columbia University

Current Profile of DRAM Read Cycle

Computer Hardware Design

Columbia University

Current Profile of 2 DRAM RD Cycles

Computer Hardware Design

Columbia University

Putting it all together: System View

Computer Hardware Design

Columbia University

In Modern Systems

Computer Hardware Design

Image SRC wikipedia.org

Columbia University

Bandwidth and Capacity

•  Total System Capacity
•  # memory controllers *

•  # memory channels per memory controller *

•  # dimms per channel *

•  # ranks on dimm *

•  # drams per rank holding data

•  Total System Bandwidth
•  # memory controllers *

•  # memory channels per memory controller *

•  Bit rate of dimm *

•  Width of data from dimm

Computer Architecture Lab

Columbia University

A6 Die Photo

Computer Architecture Lab

Columbia University

In class Design Exercise

•  Design the Instruction Issue Logic for a Out-of-order
Processor.

Computer Architecture Lab

Columbia University

Summary

•  Unit 1: Scaling, Design Process, Economics

•  Unit 2: System Verilog for Design

•  Unit 3: Design Building Blocks
•  Logic (Basic Units)

•  Memory (SRAM, DRAM)

•  Communication (Busses, Network-on-Chips)

•  Next Unit
•  Design Validation

Computer Hardware Design

