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Hardware Building Blocks I: Logic 

•  Math units 
•  Simple fixed point, floating point arithmetic units 

•  Complex trigonometric or exponentiation units 

•  Decoders 
•  N input wires 

•  M output wires, M > N 

•  Encoders 
•  N input wires 

•  M output wires, M < N, e.g., first one detector 
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Decoders 

Encoders 
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Designware Components 

•  dwbb_quickref.pdf (on courseworks) 
•  Do not distribute 

Computer Hardware Design 



Columbia University 

Hardware Building Blocks II: Memory 

•  Simple Register: Flop/latch groups 

 

•  Random Access Memory 
•  Data = RAM[Index] 

•  Parameters: Depth, Width, Portage 

 

•  Content Addressable Memory 
•  Index = CAM [Data] 

•  Parameters: Depth, Width, Portage 

•  Operations supported (Partial Search, R/W) 

•  Queues 
•  Data = FIFO[oldest] or Data = LIFO[youngest] 
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Building Blocks III : Communication 

•  Broadcast (Busses) 
•  Message is sent to all clients 

•  Only one poster at any time 

•  Does not scale to large number of nodes 

 

 

•  Point-to-Point (Networks) 
•  Message is sent to one node 

•  Higher aggregate bandwidth 

•  De rigueur in hardware design 

Computer Hardware Design 
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Building Blocks IV: Controllers 

•  Pipeline controllers 
•  Manages flow of data through  pipeline regs 

•  Synthesized as random logic 

•  Synchronizer 
•  Chips have multiple clock domains 

•  Handle data xfer between clock domains 

•  Memory, I/O controllers 
•  Fairly complex blocks, e.g., DRAM controller 

•  Often procured as Soft-IP blocks 
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Rest of this Unit 

More depth:  

•  Pipelining/Pipeline Controllers 

•  SRAM 

•  DRAM 

•  Network on Chip 

Computer Hardware Design 
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Pipelining Basics 

Computer Hardware Design 

Stage 1 

L1 

Stage 2 

L2 

Stage 3 

L3 

tcomb toverhead 

tclock 

Clock Frequency = 1/(tcomb +tclock + toverhead )    

Module S1S2S3 
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Pipelining Design Choices 

Computer Hardware Design 

L1 L2 L3 

Consider: 

L1 L2 L3 

ARBITER 
LARGE, EXPENSIVE  

SHARED RESOURCE 
(only one pipeline can access) 

How should you orchestrate access to the shared resource? 



Columbia University 

Pipelining Design Choices 

Computer Hardware Design 

L1 L2 L3 

Consider: 

L1 L2 L3 

ARBITER 
LARGE, EXPENSIVE  

SHARED RESOURCE 
(only one pipeline can access) 

Strategy1: GLOBAL STALL 

L1 L2 L3 

L1 L2 L3 

ARBITER 

Global Stall 

Global Stall 

Pros: Intellectually Easy! 

Cons: SLOW! 
•  Delay α Length of wire 
•            α Fanout 
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Pipelining Design Choices 

Computer Hardware Design 

L1 L2 L3 

Consider: 

L1 L2 L3 

ARBITER 
LARGE, EXPENSIVE  

SHARED RESOURCE 
(only one pipeline can access) 

Strategy 2: PIPELINED STALL 

L1 L2 L3 

L1 L2 L3 

ARBITER 

Pipelined Stall 

Pipelined Stall 

Pros: Fast! 

Cons: Area 
•  One cycle delay for stalls => one 
additional latch per stage! 
•  More complex arbitration 



Columbia University 

Space-Time Diagram 

Computer Architecture Lab 

Stage Cycle N Cycle N  + 1 Cycle N + 3 Cycle N + 4 
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K – 3 D 

K – 4 E 
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Space-Time Diagram 

Computer Architecture Lab 
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Space-Time Diagram 

Computer Architecture Lab 
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Space-Time Diagram 

Computer Architecture Lab 
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Space-Time Diagram 

Computer Architecture Lab 
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Pipelining Design Choices 

Computer Hardware Design 

L1 L2 L3 

Consider: 

L1 L2 L3 

ARBITER 
LARGE, EXPENSIVE  

SHARED RESOURCE 
(only one pipeline can access) 

Strategy 3: OVERFLOW BUFFERS AT THE END 

L1 L2 L3 
OVERFLOW  
BUFFERS ARBITER 

Pros: Very fast, useful when 
pipelines are self-throttling 
Cons:  
•  Area! 
•  Complex arbitration logic at the arb. 



Columbia University 

Generic Pipeline Module 

Computer Architecture Lab 
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Introduction to Memories 

•  Von-neumann model 
•  “Instructions are data” 

 

 

 

 

 

 

•  Memories are primary determiners of performance 
•  Bandwidth 

•  Latency 

  

Computer Architecture Lab 
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Memory Hierarchies 

•  Invented to ameliorate some memory system issues 

•  A fantastic example of how architectures can address 
technology limitations 

Computer Hardware Design 

SRAM 

DRAM 

Hard Disk  

Speed Size Cost 
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Types of Memories 

Computer Hardware Design 

Memory Arrays

Random Access Memory Serial Access Memory Content Addressable Memory
(CAM)

Read/Write Memory
(RAM)

(Volatile)

Read Only Memory
(ROM)

(Nonvolatile)

Static RAM
(SRAM)

Dynamic RAM
(DRAM)

Shift Registers Queues

First In
First Out
(FIFO)

Last In
First Out
(LIFO)

Serial In
Parallel Out

(SIPO)

Parallel In
Serial Out

(PISO)

Mask ROM Programmable
ROM

(PROM)

Erasable
Programmable

ROM
(EPROM)

Electrically
Erasable

Programmable
ROM

(EEPROM)

Flash ROM
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Memory 

Computer Hardware Design 
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D Latch 

•  When CLK = 1, latch is transparent 
•  D flows through to Q like a buffer 

•  When CLK = 0, the latch is opaque 
•  Q holds its old value independent of D 

•  a.k.a. transparent latch or level-sensitive latch 
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D Latch Design 

•  Multiplexer chooses D or old Q 
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D Latch Operation 

CLK = 1

D Q

Q

CLK = 0

D Q

Q

D

CLK

Q

25 
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D Flip-flop 

•  When CLK rises, D is copied to Q 

•  At all other times, Q holds its value 

•  a.k.a. positive edge-triggered flip-flop, master-slave 
flip-flop 

26 
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D Flip-flop Design 

•  Built from master and slave D latches 
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D Flip-flop Operation 

CLK = 1

D

CLK = 0

Q

D

QM

QM
Q

D

CLK

Q
28 
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Enable 

•  Enable: ignore clock when en = 0 
•  Mux: increase latch D-Q delay 
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Reset 

•  Force output low when reset asserted 

•  Synchronous vs. asynchronous 
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Building Small Memories 

•  We have done this already 

•  Latch vs Flip Flop tradeoffs  
•  Count number of transistors 

•  Examine this tradeoff in your next homework 

Computer Hardware Design 
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SRAMs 

•  Operations 
•  Reading/Writing 

•  Interfacing SRAMs into your design 
•  Synthesis 

Computer Architecture Lab 
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SRAM Abstract View 
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SRAM ADDRESS 
VALUE 

DEPTH = Number of Words 

WIDTH = WORD SIZE 

READ 

WRITE 

CLOCK 

POWER 
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SRAM Implementation 

Computer Hardware Design 
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Bistable CMOS 

Computer Hardware Design 

ONE ZERO ZERO 
ONE 
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The “6T” - SRAM CELL 

 
•  6T SRAM Cell 

•  Used in most commercial chips 
•  Data stored in cross-coupled inverters 

•  Read: 
•  Precharge BL, BLB (Bit LINE, Bit LINE BAR) 
•  Raise WL (Wordline) 

•  Write: 
•  Drive data onto BIT, BLB   
•  Raise WL 

Computer Architecture Lab 
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SRAM Read 

•  Precharge both bitlines high 

•  Then turn on wordline 

•  One of the two bitlines will be pulled down by the cell 

•  Ex: A = 0, A_b = 1 
•  bit discharges, bit_b stays high 

•  But A bumps up slightly 

•  Read stability 
•  A must not flip 

•  N1 >> N2 

37 
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SRAM Write 

•  Drive one bitline high, the other low 

•  Then turn on wordline 

•  Bitlines overpower cell with new value 

•  Ex: A = 0, A_b = 1, bit = 1, bit_b = 0 
•  Force A_b low, then A rises high 

•  Writability 
•  Must overpower feedback inverter 

•  N2 >> P1 
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SRAM Sizing 

•  High bitlines must not overpower inverters during 
reads 

•  But low bitlines must write new value into cell 
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Decoders 

•  n:2n decoder consists of 2n n-input AND gates 
•  One needed for each row of memory 

•  Naïve decoding requires  large fan-in AND gates 
•  Also gates must be pitch matched with SRAM logic 

40 
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Large Decoders 

•  For n > 4, NAND gates become slow 
•  Break large gates into multiple smaller gates 
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Predecoding 

•  Many of these gates are redundant 
•  Factor out common 

 gates into predecoder 

•  Saves area 

42 
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Timing 

•  Read timing 
•  Clock to address delay 

•  Row decode time 

•  Row address driver time 

•  Bitline sense time 

•  Setup time to capture data on to latch 

•  Write timing 
•  Usually faster because bit lines are actively driven 

Computer Hardware Design 



Columbia University 

Drawbacks of Monolithic SRAMS 

•  As number of SRAM cells increases, the number of 
transistors increase, increasing  the total capacitance 
and therefore the resulting delay and power increase 

•  Increasing number of cells results in physical 
lengthening of the SRAM array, increasing the 
wordline wire length and the wiring capacitance 

•  More power in the bitlines is wasted each cycle 
because more and more columns are activated by a 
single word line even though a subset of these 
columns are activated. 

Computer Hardware Design 
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Banking SRAMs 

•  Split the large array into small subarrays or banks 

•  Tradeoffs 
•  Additional area overhead for sensing and peripheral circuits 

•  Better speed 

•  Divided wordline Architecture 
•  Predecoding 

•  Global wordline decoding 

•  Local wordline decoding 

•  Additional optimization – divided bitlines 

Computer Hardware Design 
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Multiple Ports 

•  We have considered single-ported SRAM 
•  One read or one write on each cycle 

•  Multiported SRAM are needed in several cases 
Examples: 
•  Multicycle MIPS must read two sources or write a result on 

some cycles 

•  Pipelined MIPS must read two sources and write a third result 
each cycle 

•  Superscalar MIPS must read and write many sources and 
results each cycle 
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Dual-Ported SRAM 

•  Simple dual-ported SRAM 
•  Two independent single-ended reads 

•  Or one differential write 

•  Do two reads and one write by time multiplexing 
•  Read during ph1, write during ph2 

bit bit_b

wordB
wordA
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Multi-Ported SRAM 

•  Adding more access transistors hurts read stability 

•  Multiported SRAM isolates reads from state node 

•  Single-ended bitlines save area 
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Microarchitectural Alternatives 

•  Banking 

 

•  Replication 

Computer Hardware Design 
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In this class 

•  Step 1: Try to use SRAM macros 
•  /proj/castl/development/synopsys/SAED_EDK90nm/Memories/

doc/databook/Memories_Rev1_6_2009_11_30.pdf 

•  Please do not e-mail, distribute or post online 

 

•  Step 2: Build small memories (1K bits) using flip-flops 

•  Step 3: Use memory compiler for larger non-standard 
sizes (instructions provided before project) 

Computer Hardware Design 
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DRAM Reference 

Computer Hardware Design 

Reference Chapters: 
 
Chapter 8 (353 – 376) 
Chapter 10 (409 - 424) 
Chapter 11 (425 - 456 

Or listen to lectures and take notes 
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DRAM: Basic Storage Cell 

Computer Hardware Design 
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DRAM Cell Implementations 

Computer Hardware Design 

Trench 
Stacked 
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DRAM Cell Implementations 

Computer Hardware Design 
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DRAM Array 

Computer Hardware Design 
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Bitlines with Sense Amps 

Computer Hardware Design 
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Read Operation 

Computer Hardware Design 
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Timing of Reads 

Computer Hardware Design 
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Timing of Writes 

Computer Hardware Design 
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DRAM System Organization 

Computer Hardware Design 
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SDRAM Device Internals 

Computer Hardware Design 
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More Nomenclature 

Computer Hardware Design 
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Example Address Mapping 

Computer Hardware Design 
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Command and Data Movement 

Computer Hardware Design 
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Timing: Row Access Command 

Computer Hardware Design 
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Timing: Column-Read Command 

Computer Hardware Design 
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Protocols: Column-Write Command 

Computer Hardware Design 
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Timing: Row Precharge Command 

Computer Hardware Design 
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One Read Cycle 

Computer Hardware Design 
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One Write Cycle 

Computer Hardware Design 
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Common Values for DDR2/DDR3 

Computer Hardware Design 

SOURCE: 
 
Krishna T. Malladi, Benjamin C. Lee, Frank A. Nothaft, Christos Kozyrakis, 
Karthika Periyathambi, and Mark Horowitz. 2012. Towards energy-
proportional datacenter memory with mobile DRAM. SIGARCH Comput. 
Archit. News 40, 3 (June 2012), 37-48. DOI=10.1145/2366231.2337164 
http://doi.acm.org/10.1145/2366231.2337164 

For more information refer to Micron or Samsung 
Datasheets. Uploaded to class website. 
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Multiple Command Timing 

Computer Hardware Design 
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Consecutive Rds to Same Rank 

Computer Hardware Design 
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Consecutive Rds: Same Bank, Diff Row 

Computer Hardware Design 

Worst Case 
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Consecutive Rds: Same Bank, Diff Row 

Computer Hardware Design 

Best Case 
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Consecutive Rd’s to Diff Banks w/ Conflict 

Computer Hardware Design 

w/o command reordering 
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Consecutive Rd’s to Diff Banks w/ Conflict 

Computer Hardware Design 

w/ command reordering 
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Consecutive Col Rds to Diff Ranks 

Computer Hardware Design 

SDRAM: RTRs = 0 
DDRx = non-zero 
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Consecutive Col-WRs to Diff Ranks  

Computer Hardware Design 
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On your Own 

Computer Hardware Design 
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Consecutive WR Reqs: Bank Conflicts 

Computer Hardware Design 
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WR Req. Following Rd. Req: Open Banks 

Computer Hardware Design 
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RD following WR: Same Rank, Open Banks 

Computer Hardware Design 
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RD Following WR to Diff Ranks, Open 
Banks 

Computer Hardware Design 
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Current Profile of DRAM Read Cycle 

Computer Hardware Design 
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Current Profile of 2 DRAM RD Cycles  

Computer Hardware Design 
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Putting it all together: System View 

Computer Hardware Design 
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In Modern Systems 

Computer Hardware Design 

Image SRC wikipedia.org 
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Bandwidth and Capacity 

•  Total System Capacity 
•  # memory controllers * 

•  # memory channels per memory controller * 

•  # dimms per channel * 

•  # ranks on dimm * 

•  # drams per rank holding data 

•  Total System Bandwidth 
•  # memory controllers * 

•  # memory channels per memory controller * 

•  Bit rate of dimm * 

•  Width of data from dimm 

Computer Architecture Lab 
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A6 Die Photo 

Computer Architecture Lab 
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In class Design Exercise 

•  Design the Instruction Issue Logic for a Out-of-order 
Processor. 

Computer Architecture Lab 
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Summary 

•  Unit 1: Scaling, Design Process, Economics 

•  Unit 2: System Verilog for Design 

•  Unit 3: Design Building Blocks 
•  Logic (Basic Units) 

•  Memory (SRAM, DRAM) 

•  Communication (Busses, Network-on-Chips) 

•  Next Unit 
•  Design Validation 

Computer Hardware Design 


