
Cryptographic Engineering

Steven M. Bellovin October 13, 2014 1

Cryptographic Engineering — Issues

• Suppose we want to use crypto to protect files. Now what?

• What to encrypt?

• Where should keys be stored?

• What is the tradeoff between availability and confidentiality?

Steven M. Bellovin October 13, 2014 2

Why Encrypt Files?

• Theft of files

• Theft of backup media

• Theft of computer

Steven M. Bellovin October 13, 2014 3

Bad Reasons and Good

• Is there a flaw in the operating system’s protection mechanisms?
Why can’t the OS keep bad guys from the file?

• You don’t trust the system administrator? Can the sysadmin steal the
decryption key?
+But — if you’re using NFS, the file may reside on one
(untrustworthy) machine, while the decryption is done on another

• Laptops have feet — a remarkably high percentage are stolen

Steven M. Bellovin October 13, 2014 4

Laptop Theft
September 17, 2000

IRVINE – Qualcomm founder Irwin Jacobs’ laptop computer disappeared
during a conference yesterday in an apparent theft that could put some of
the company’s most sensitive secrets at risk.

. . .

Jacobs said his laptop contained ”everything,” secret corporate
information, including e-mail dating back years, financial statements and
even personal mementos.

. . .

Though Jacobs’ IBM ThinkPad PC is valued at about $3,700, the value of
the information it contained is incalculable to Qualcomm and to Jacobs.

Steven M. Bellovin October 13, 2014 5

Caveats

• Encrypting a file system provides confidentiality

• It generally does not provide integrity protection

• It may result in a loss of availability, if you lose the key

Steven M. Bellovin October 13, 2014 6

Encryption Options

• Manually encrypt/decrypt files

• Overlay encryption on top of the file system

• Encrypt an entire disk partition

Steven M. Bellovin October 13, 2014 7

Manual Encryption

• Very inconvenient to use

• Users are constantly supplying keys

• Most utilities won’t have direct interfaces to the decryption function;
you have to manually decrypt files before use

• Users will forget to re-encrypt files

• Important design principle: make it easy for users to do the right thing

Steven M. Bellovin October 13, 2014 8

File System Encryption

• Some sort of overlay on real file system

• Encryption and decryption operate on individual files, but
transparently to applications

• Directories are files, too, so filenames are encrypted

Steven M. Bellovin October 13, 2014 9

Problems With File System Encryption

• Metadata is not encrypted

• File lengths are not protected

• File name lengths are not well-protected

Steven M. Bellovin October 13, 2014 10

File Size Distribution

Steven M. Bellovin October 13, 2014 11

Population Count For a Few File Sizes

Type 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB
Other 14839 4832 2413 1280 506 365 265 182
NEF 3891 3649 118
JPG 83480 7498 8947 648 235 48 4 1
MP3 84 268 532 419 273 150 93 53

Files of 5 MB or 6 MB are — on my disk — very likely to be NEFs; files
under 5 MB or over 7 MB are never NEFs. Files of 1–3 MB are probably
JPG; files 7 MB and larger are almost never JPG.

Steven M. Bellovin October 13, 2014 12

Encryption Using CFS
$ cattach /usr/mab/secrets matt
Key:
$ ls -ld /crypt/matt
drwx------ 2 mab 512 Apr 1 15:56 matt
$ echo "murder" > /crypt/matt/crimes
$ ls -l /crypt/matt
total 1
-rw-rw-r-- 1 mab 7 Apr 1 15:57 crimes
$ cat /crypt/matt/crimes
murder
$ ls -l /usr/mab/secrets
total 1
-rw-rw-r-- 1 mab 15 Apr 1 15:57 8b06e85b87091124
$ cat -v /usr/mab/secrets/8b06e85b87091124
M-Z,k\x{02C6}]\x{02C6}B\x{02C6}VM-VM-6A\x{02DC}uM-LM-_M-DM-\x{02C6}[

Steven M. Bellovin October 13, 2014 13

Doing the Encryption

• What mode of operation do you use?
+CBC is a good choice

• Where does the IV come from? (Note: on Unix, must support seeks
to any byte)

• Partial solution: encrypt each block separately; use block number as
part of IV

• Must use some metafile for the rest of the IV. Solution must survive
file copies, dump/restore, etc. (CFS uses .pvect files.)

• What about never-written blocks? On Unix, these read as all 0s

Steven M. Bellovin October 13, 2014 14

Providing Keys for Encrypted File Systems

• File system encryption: can be supplied by user

• Can have fine-granularity keying, per sub-tree

• Disk Encryption: one key per encrypted partition. Shared?

• In either case, once the key is supplied, you rely on OS protection
mechanisms

• Bottom line: file system or disk encryption is useful if the threat is
compromise from outside the boundaries of the machine: physical
theft, remote file system, backup media, etc.

• It is not useful for intra-machine threats; an enemy who can bypass
access controls can steal the key or the plaintext

• Encryption is not a substitute for operating system access controls
Steven M. Bellovin October 13, 2014 15

Disk Encryption

• Encrypt an entire disk or disk partition

• Protects everything, even the free space

+ Very important, given that “delete” operations do not delete the data

• Useful for protecting swap area

• But — free space in encrypted section is not available for plaintext
use, and vice-versa

• Problematic for remote file system

Steven M. Bellovin October 13, 2014 16

Protecting a Key Database

• How does the (symmetric key) trusted party safeguard its database of
keys?

• Encrypt it? Where does the decryption key come from?

• One answer: supplied by operator at reboot time

• Another answer: store on a separate file system, so that the key and
the encrypted data won’t be on the same backup medium

• Tradeoff: availability versus confidentiality and integrity

• Use secure crypto hardware to decrypt database?

• Who has what sort of access, and what are their powers?

Steven M. Bellovin October 13, 2014 17

How Does a User Store a Key?

• Store key on disk, encrypted

• Generally decrypted with passphrase

• Passphrases are weak, but they’re a second layer, on top of OS file
access controls

Steven M. Bellovin October 13, 2014 18

Use Indirection

• Generate a random key to encrypt the data (DEK—Data-Encrypting
Key)

• Use the user-supplied key to encrypt the DEK

+ Make changing the password fast

• (Effectively) erase the disk is also very quick

Steven M. Bellovin October 13, 2014 19

Secure Cryptographic Hardware

• Can be used for users or servers

• More than just key storage; perform actual cryptographic operations

• Enemy has no access to secret or private keys

• Friends have no access, either

• Modular exponentiation can be done much faster with dedicated
hardware

Steven M. Bellovin October 13, 2014 20

Hardware Issues

• Hardware must resist physical attack

• Environmental sensors: detect attack and erase keys

• Example: surround with wire mesh of known resistance; break or
short circuit is detected

• Example: temperature sensor, to detect attempt to freeze battery

Steven M. Bellovin October 13, 2014 21

Limitations of Cryptographic Hardware

• Tamper-resistant, not tamper-proof

• Again: who is your enemy, and what are your enemy’s powers?

• (Remember the “crypto in the hands of the enemy” problem.)

• How does Alice talk to it securely? How do you ensure that an enemy
doesn’t talk to it instead?

• What is Alice’s intent? How does the crypto box know?

• What if there are bugs in the cryptographic processor software?
(IBM’s 4758 has a 486 inside. That can run complex programs. . .)

Steven M. Bellovin October 13, 2014 22

Summary of Key Management
and Key Handling

• Sharing cryptographic keys is a delicate business

• Protecting keying material is crucial

• There are no great solutions for general-purpose systems, though
proper hardware can prevent compromise (but not misuse) of
long-term keys

Steven M. Bellovin October 13, 2014 23

Random Numbers

• Random numbers are vital for cryptography

• They’re used for keys, nonces, primality testing, and more

• Where do they come from?

Steven M. Bellovin October 13, 2014 24

What is a Random Number?

• Must be unpredictable

• Must be drawn from a large-enough space

• Ordinary statistical-grade random numbers are not sufficient

• Distribution not an indication of randomness: loaded dice are still
random!

Steven M. Bellovin October 13, 2014 25

Generating Random Numbers

Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin.

—John von Neumann, 1951

Steven M. Bellovin October 13, 2014 26

Sources of Random Numbers

• Dedicated hardware random number sources

• Random numbers lying around the system

• Software pseudo-random generator

• Combinations

Steven M. Bellovin October 13, 2014 27

Hardware Random Number Generators

• Radioactive decay

• Thermal noise

• Oscillator pairs

• Other chaotic processes

Steven M. Bellovin October 13, 2014 28

Radioactive Decay

• Timing of radioactive decay unpredictable even in theory — it’s a
quantum process

• Problem: low bit rate from rational quantities of radioactive material

• Problem: not many computers have Geiger counters or radioactive
isotopes attached. . .

• See http://www.fourmilab.ch/hotbits/hardware.html

and http://www.fourmilab.ch/hotbits/hardware3.html

for a description of how to do it. . .

Steven M. Bellovin October 13, 2014 29

Thermal Noise

• Any electronic device has a certain amount of random noise (thermal
noise in the components)

• Example: Take a sound card with no microphone and turn up the gain
to maximum

• Or use a digital camera with the lens cap on

• Problem: modest bit rate

Steven M. Bellovin October 13, 2014 30

Oscillator Pairs

• Have a free-running fast R-C oscillator (don’t use a crystal; you don’t
want it accurate or stable!)

• Have a second, much slower oscillator

• At each maximum of the slow oscillator, sample the value of the fast
oscillator

• Caution: watch for correlations or couplings between the two

Steven M. Bellovin October 13, 2014 31

Dual Oscillator RNG

Steven M. Bellovin October 13, 2014 32

Other Chaotic Processes

• Mouse movements

• Keystroke timing (low-order bits)

• Network packet timing (low-order bits)

• Disk seek timing: air turbulence affects disk internals (but what about
solid state disks?)

+ At boot time, there’s not much of this available

• Also: what if the enemy can observe the process?

• Cameras and Lava Lites R©! (http://www.lavarnd.org/)

Steven M. Bellovin October 13, 2014 33

Problems

• Need deep understanding of underlying physical process

• Stuck bits

• Variable bit rate

• How do we measure their randomness?

• Assurance — how do we know it’s working properly?

Steven M. Bellovin October 13, 2014 34

Software Generators

• Again, ordinary generators, such as C’s random() function or Java’s
Random class are insufficient

• Can use cryptographic primitives — encryption algorithms or hash
functions — instead

• But — where does the seed come from?

Steven M. Bellovin October 13, 2014 35

Typical Random Number Generator

unsigned int

nextrand()

{
static unsigned int state = 1;

state = f(state);

return state;

}

What’s wrong with this for cryptographic purposes?

Steven M. Bellovin October 13, 2014 36

Problems

• The seed is predictable

• There are too few possible seeds

• The output is the state variable; if you learn one value, you can
predict all subsequent ones

Steven M. Bellovin October 13, 2014 37

A Better Version

unsigned int

nextrand()

{
static unsigned int state;

static int first = 1;

if (first) {first = 0; state = truerand();}
state = f(state);

return sha1(state);

}

Steven M. Bellovin October 13, 2014 38

Much Better

• State is initialized from a true-random source

• Can’t invert sha1() to find state from return value

• But there is a serious problem here. What is it?

Steven M. Bellovin October 13, 2014 39

State Space

• sha1() isn’t invertible, but we can do a brute force analysis

• state is too short, and can can be found in 232 tries

• Estimated resources on a 3.4 Ghz Pentium: 3.6 hours CPU time; 150
GB

• Parallelizes nicely

• Need enough state — and hence enough true-random bits — that
brute force is infeasible.

Steven M. Bellovin October 13, 2014 40

Private State

• An application can keep a file with a few hundred bytes of random
numbers

• Generate some true-random bytes, mix with the file, and extract what
you need

• Write the file back to disk — read-protected, of course — for next time

• What about stored VMs? Will they get the same seed each time?

Steven M. Bellovin October 13, 2014 41

OS Facilities

• Many operating systems can provide cryptographic-grade random
numbers

• /dev/random: True random numbers, from hardware sources

• /dev/urandom: Software random number generator, seeded from
hardware

• Windows has analagous facilities

Steven M. Bellovin October 13, 2014 42

A Well-Known Failure

• As noted, not much randomness is available at boot time

• But—that’s often when key pairs are generated

• An RSA public key is the product of two “random” primes

• Might one be predictable?

• Heninger, Durumeric, Wustrow, and Halderman showed that many
ssh keys have at least one predictable prime factor, for just this
reason

Steven M. Bellovin October 13, 2014 43

DUAL EC DBRG: The NSA Back Door

• NIST decided to standardize a software PRNG

+ This is a good thing

• NIST picked several designs—and the NSA persuaded NIST to
include another based on elliptic curve cryptography

• It seemed odd—DUAL EC is quite slow, since it’s based on public key
technology—but the NSA insisted that they needed it. They did need
it, but not for the usual reason. . .

• At least one company, RSA, made it the default in their product,
allegedly after being paid off

Steven M. Bellovin October 13, 2014 44

The Problem with DUAL EC DBRG

• The algorithm includes a “random” constant

• If it’s not random—if it’s the public key in an elliptic curve
cryptosystem—anyone who can see enough of the output from the
PRNG and knows the corresponding private key can predict all future
output from the algorithm

• Many protocols do in fact transmit some random bits in the clear

• There have been public demonstrations that it’s exploitable under
certain circumstances

• NIST has removed it from their standard, RSA has removed it from
their code. . .

Steven M. Bellovin October 13, 2014 45

Hardware Versus Software
Random Number Generators

• Hardware values can be true-random

• Output rate is rather slow

• Subject to environmental malfunctions, such as 60 Hz noise

• Software, if properly designed and written, is fast and reliable

• Combination of software generator with hardware seed is usually best

Steven M. Bellovin October 13, 2014 46

Summary

• To paraphrase Knuth, random numbers should not be generated by a
random process

• In many systems, hardware and software, random number generation
is a very weak link

• Use standard facilities when available; if not, pay attention to RFC
4086

Steven M. Bellovin October 13, 2014 47

