
Secure Operations

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US


Secure Operations

Your design is (you believe) secure
Your code is (you believe) correct
How do you operate your system securely?
Lots of things left to do. . .

Secure Operations 2 / 54



Elements

Code quality
Patching
System administration
Process
Logging (which we’ve already covered)

Secure Operations 3 / 54



Code Quality

You didn’t write all of your own software
No, you really didn’t
You probably did not write the OS, the compiler, the libraries, the browsers
your users rely on, your word processors, the firmware in all of your many
devices, the software in BYOD gadgets, and more
How secure is all of that code?

Secure Operations 4 / 54



Assessing Software Quality

You’re considering getting a software package—or perhaps you’re already
running it—and you want to assess its security
How do you do this?
Reputation, measurement, testing, code quality, reviews

Secure Operations 5 / 54



Reputation

Good code without good process is exceedingly rare
Does a good, secure reliable product imply the existence of a good
process? Perhaps.
Does that mean that other packages from the same vendor are likely to be
equally good? That’s a much harder call—different divisions in a company
can have different processes
Even different programmers working on the same product can have
different abilities
Overall, though, reputation is a decent starting point

Secure Operations 6 / 54



Reputation

Reputation of a product is a better predicter than the reputation of the
company
Sometimes, a company’s standards are the same throughout, but
sometimes not
There may be a legacy code base that takes a long time to clean up
Very new products, even those developed properly, are more likely to
harbor problems: “Never install .0 of anything”

Secure Operations 7 / 54



Quality is Dynamic

Sometimes, bad products get better—a lot better
In 1994, Bill Cheswick and I wrote

The most common implementation of SMTP is contained in sendmail.
. . . you get less than you pay for. Sendmail is a security nightmare.

No longer true—it’s been years since the last major hole in it

Secure Operations 8 / 54



Microsoft as a Danger

In the late 1990s, Microsoft products were a joke
“Internet Exploder”
“Microsoft Look Out!”
“Using Internet-exposed IIS Web servers securely has a high cost of
ownership. Nimda has again shown the high risk of using IIS and the effort
involved in keeping up with Microsoft’s frequent security patches” —The
Gartner Group, 2001
(They canceled that warning in 2004.)

Secure Operations 9 / 54



Microsoft Gets Religion

Bill Gates and Steve Ballmer realized that this sort of reputation for
crapware was an existential threat to the company
They got religion on security and started a company-wide security effort
Result: Windows 11 is probably the most secure general-purpose
operating system ever released

Secure Operations 10 / 54



Testing

You could build your own test suite
You could fuzz it
This is done, in high-risk situations, but it’s expensive and not commonly
done by purchasers

Secure Operations 11 / 54



Open Source

With open source code, you can look at everything and (often) even
download the test cases
Besides, “given enough eyeballs, all bugs are shallow”, right?

R Well, no.
These eyes have to actually look, and they have to know what they’re
doing
These eyes probably need code-auditing tools and the knowledge and will
to use them
Very few open source projects have disciplined, high-quality development
processes—which means that the code is often much worse

Secure Operations 12 / 54



Open Source

With open source code, you can look at everything and (often) even
download the test cases
Besides, “given enough eyeballs, all bugs are shallow”, right?

R Well, no.
These eyes have to actually look, and they have to know what they’re
doing
These eyes probably need code-auditing tools and the knowledge and will
to use them
Very few open source projects have disciplined, high-quality development
processes—which means that the code is often much worse

Secure Operations 12 / 54



Measurement and Code Quality Without Source

It seems odd—how can one measure code quality without access to source
code
It sounds improbable—but in fact it’s being done

Secure Operations 13 / 54



Cyber Independent Test Lab

Assess the likely safety of software based on external characteristics
Not an absolute score, a relative one: the same application on different
platforms, or different applications on one platform
Not a guarantee of security, but it does indicate relative risk

Secure Operations 14 / 54



Safety Measures

Many platforms support different safety measures, but programmers have
to turn them on
Example: use “stack guard” to prevent some buffer overflows
Example: “data execution prevention” makes the stack and/or heap
non-executable, to prevent the attacker from injecting code
Again, though, you have to enable them. CITL found that Zoom did not

Secure Operations 15 / 54



Code Hygiene

It’s often possibly to tell, externally, which functions were used
Some functions are riskier than others. They can be used safely, but often
are not; their presence suggests a lack of security consciousness, as well
as potential danger in its own right.
Bad: strcat(); better: strncat(); best: strlcat()

Secure Operations 16 / 54



Code Complexity

Complex code tends to be buggy and hence insecure
Things to look for: code size; number of conditional branches; size &
number of stack adjusts; function size
Again: not a sign of insecurity, but (in the opinion of most software
security people) correlated with it

Secure Operations 17 / 54



Patching

Secure Operations 18 / 54



Patching

No code base is perfect
I said that Microsoft code is very, very good—but the April 2023 “Patch
Tuesday” fixed 100 bugs, 7 rated “critical” and (at least) being one
actively exploited

R A similar hole to the one in active use was fixed in February—apparently,
Microsoft’s original patch wasn’t good enough
Conclusion: you must patch
But—there are many issues

Secure Operations 19 / 54



Issues with Patching

Patches may themselves be buggy and create new problems
The patch may not fix the problem
Applications may be incompatible with patches
Binary versus source patches
Patch dependencies

Secure Operations 20 / 54



Issues with Not Patching

Some attackers reverse-engineer patches and learn new exploits
Intelligence agencies certainly do that
If you wait too long, it gets harder to upgrade; you often can’t skip versions
Your software will eventually be EOLed

Secure Operations 21 / 54



Patching Strategies

Vendor push
Mandatory or quasi-mandatory user downloads
User pull
None—software has been EOLed

Secure Operations 22 / 54



Types of Security Holes

Denial of service
Local exploit—attacker must already be logged in
Remote exploit—much more serious; the attacker doesn’t need to be on
your system already
Privilege escalation—a local user (or local malware) can gain more
privileges
Sandbox escape
File disclosure
Code execution
No user interaction required

Secure Operations 23 / 54



Threat Issues

Are you being targeted? By whom?
How difficult is the attack? Do likely enemies have that capability?
Is the problem currently being exploited? By whom?

Secure Operations 24 / 54



Patch Timing

When is the patch available?
When can you install it, relative to availability?
How much of a window is there for attackers?
Regular schedules are predictable for system administrators; they can
schedule testing, downtime, etc.
But what about urgent, off-schedule patches?

Secure Operations 25 / 54



Patching Strategies

First and foremost: be aware of patch availability
(Remember that attackers pay attention)
Second: assess your risk
Third: schedule patch installation to minimize risk of patching versus risk
of not patching

Secure Operations 26 / 54



Ordinary Consumers

Most patches don’t break most things
History suggests that many people do not patch
But: most exploits are due to holes for which patches exist
Conclusion: force patch installation
Chrome: must patch; Windows: must patch; MacOS: autopatch
encouraged but not mandatory
(Some platforms permit deferred patching—but not for too long)

Secure Operations 27 / 54



Small Businesses

Often treated the same as consumers
But—are more likely to have mission-critical software that is incompatible
with the patch
Some delay is often advisable, to shake out bad patches—but few small
businesses have IT expertise to track things like that
Conclusion: often better to treat like consumers—but the IT consultant
should have installed easy backup/restore (which is necessary anyway)
If feasible, such businesses should have an IT service contract

Secure Operations 28 / 54



Larger Businesses

Patching for a large organization is hard
There are many unusual or locally written applications
There are many servers to patch

Secure Operations 29 / 54



Test Labs

A well-run organization has a suitable test lab, equipped to test all local
applications
Some of this can be done with virtual machines, some can’t—but it has to
be done
Ordinary desktops are easier to patch; they run similar software (though
not everyone will use every application)
Servers are hard

Secure Operations 30 / 54



Patching Servers

Every server is different
Servers often talk to databases—and what if a database is corrupted?
Servers tend to have more complex software

Secure Operations 31 / 54



Tracking Software

Actually, what software is running on which machines?
What versions of the software?
What versions of the libraries?
By the way—who runs each server? In a large company, it’s hard to know!
You have to track all of this!

Secure Operations 32 / 54



Open Source and Other Third-Party Libraries

Do you track newer versions of outside packages? How?
(How do you test new versions?)
What about dynamically loaded third-party content, e.g., node.js?
Do you use sub-resource integrity on web pages?
<script src="https://example.com/example-framework.js"

integrity="sha384-Li9vy3DqF8tnTXuiaAJuML3ky+er10rcgNR/VqsVpcw+ThHmYcwiB1pbOxEbzJr7"
crossorigin="anonymous">

</script>

(Example from https://www.w3.org/TR/SRI/)

Secure Operations 33 / 54

https://www.w3.org/TR/SRI/


Software Bill of Materials

A machine-readable list of all components that go into a software product
Must show dependencies, versions, etc.
Lets you assess your risk from newly announced bugs
Note well: the machine-readable piece is important, since it permits
creation of databases and automatic identification of vulnerable packages

Secure Operations 34 / 54



Design to Patch

You will have to patch things
Design your infrastructure for this
Example: run your servers on VMs, snapshot the VM before patching, and
then push the patch
If the patch proves problematic, revert the snapshot

Secure Operations 35 / 54



What if You Can’t Patch?

Sometimes, you can’t patch—EOLed software, incompatibilities, buggy
patch, etc.
Mitigate and monitor
Add temporary firewall rules, blocking some sites or filetypes
Temporarily block email with certain attachments
User training, though that’s always difficult
Extra monitoring for signs of this exploit
None of this is ideal, but it may beat the alternative

Secure Operations 36 / 54



EOLed Software

When code you use has ben EOLed, you’re in trouble
Generally, that means that you have not been updating regularly
You probably have old code that won’t run with newer versions
For operating systems, you may not even be able to buy replacement
hardware
You will not get any more security patches—but attackers will keep looking
for holes
You’re suddenly forced to upgrade everything, at once
Good luck. . .

Secure Operations 37 / 54



System Administration

Secure Operations 38 / 54



System Administrators

Sysadmins: your front-line soldiers in keeping systems running well
This especially includes security—if you don’t have good system
administration, your site will be insecure
But you have to let them do their job

Secure Operations 39 / 54



Challenges to System Administration

Little conceptual unity to the problem—hence little academic study on
simplifying the problem
Much of the work is invisible until something goes wrong—and then the
sysadmins get blamed
Low pay, low status, interrupt-driven—and high stress
Too few resources to do the job properly
But it’s an utterly vital role

Secure Operations 40 / 54



Sysadmins and Security

They configure computers and infrastructure
They install patches
They help set security policies
They enforce these policies
They monitor logs
They do the initial investigation into incidents, and are generally the ones
who sound the alarm when something has happened

Secure Operations 41 / 54



Building Tools

The only way to do scalable, secure system administration is to build tools
ahead of time
Databases: what devices you have, what they run, etc.
Database-driven configuration tools
Patching tools—you can buy them; make sure you use them
Ticketing systems
Tracking tools
Etc.

Secure Operations 42 / 54



Databases ≫ GUIs

GUIs are good for novices—but they don’t scale
Maybe you can do powerful operations, but only if you’d thought of every
possible operation ahead of time
Example: “The following employees, plus people in location X, are being
transferred to another company; their access to Project Y must be
restricted”
Example: configure all 117 border routers to block port 514
Example: which servers are running Apache 2.4.41 on Ubuntu 20.04.4
with IPv6 enabled?
Then: take the answer to one of those queries, and push a specific patch
to them and only them

Secure Operations 43 / 54



The Dark Side is Powerful

What if your system adminstrator has turned evil?
If you’re targeted by an intelligence agency, your sysadmins might be
targeted
(Btw, underappreciated employees are relatively easy recruits)
Sysadmins have root privileges and can override file permissions
They’re the ones monitoring the logs to see if someone is doing something
nasty
How do you stop this?

Secure Operations 44 / 54



The Dark Side is Very Powerful

Protection against a rogue sysamin is somewhere between very hard and
impossible
Personnel background checks are expensive, intrusive, and of
questionable efficacy
Best solution: logging
Log everything, including the trouble tickets that led to any actions
Note: sysadmins should create their own tickets before taking actions on
their own initiative
These logs should be audited by someone outside the sysadmin’s
organization
It’s not a perfect solution, but there aren’t any great ones

Secure Operations 45 / 54



Your Customers

Secure Operations 46 / 54



What if You’re a Software Vendor?

If you’re a vendor, your code will almost certainly require patches
Depending on what you sell, some of those bugs will be security bugs
You have to fix things

Secure Operations 47 / 54



What if You Sell (and Maybe Run) Online Software?

You’re still likely to have bugs and security holes
Those bugs are far more likely to be exploitable
Again, you have to fix things

Secure Operations 48 / 54



Policies

For how long will you support old versions of your code?
Longer is more customer-friendly, but also more expensive
What platform versions will you continue to support?
Have you communicated this clearly to your customers?

Secure Operations 49 / 54



Generating Patches

Version control systems are your friend,
even if they’re hard to use
You need to keep old build environments
available, too—virtual machines are your
friend
Older hardware platforms are more
problematic—and you have to be sure that
they’re patched to the right level

R Note that some software versions will no
longer run on newer platform patch levels
How long do you expect it to take to
generate—and test—a patch?

https://xkcd.com/1597

Secure Operations 50 / 54

https://xkcd.com/1597


Reporting Bugs

How do your customers report bugs, including security bugs?
How do non-customers report security problems?
Do you make it clear that you won’t threaten them for doing so?
Do you pay “bug bounties”?

Secure Operations 51 / 54



Alerting Customers

How do you alert customers to potential security problems?
What is the timing of your detailed description of the security hole relative
to when patches are available?
How do you distribute patches?
Can you track how many customers have installed the fixes?
How easy is it for customers to install the patches?
How easy is it for customers to install the patches at scale?

Secure Operations 52 / 54



It’s Not Easy!

None of these questions have easy answers
Piggybacking on a platform’s update mechanism, e.g., an app store
answers some of the questions, but it may be too expensive
But you have to have answers for all of these questions and more

Secure Operations 53 / 54



Questions?

(Scarlet tanager, Riverside Park, May 8, 2019)


	Patching
	System Administration
	Your Customers

