COMS 3261 Handout 2A: Deterministic Finite Automata Practice

Angel Cui and Owen Keith

Fall 2024

1

Determine which of ε , 11, 010, 10, 0101 is accepted by this DFA.

$\mathbf{2}$

The DFA state diagram below is defined on the alphabet $\Sigma = \{a, b, c\}$. Write out its formal definition (as a 5-tuple). When specifying the transition function δ , draw a table.

3

Draw DFAs that recognize the following languages:

- (a) $L = \{w \in \{a, b\}^* \mid w \text{ does not contain exactly two } a's\}$
- (b) $L = \{w \in \{a, b\}^* \mid w \text{ has even length and an odd number of } a$'s}
- (c) $L = \{11, 101, 010, 0110\}$

$\mathbf{4}$

Given the DFA, specify the language it recognizes:

(a) DFA M:

(b) DFA N:

5 Non-Required Challenge Problem

NOTE: The following problem is just for fun and is NOT required material.

The Cantor set C is created by starting with the unit interval [0, 1] and iteratively repeating the following process. First, the middle open third $(\frac{1}{3}, \frac{2}{3})$ is removed, leaving two segments $[0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$. Again, the open middle third of each remaining segment is removed leaving $[0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1]$. At each step the open middle third of all remaining segments is removed, and the Cantor set C is the set of all points in [0, 1] that are not deleted during any step of this infinite process.

Let $\Sigma = \{0, 1, 2\}$. Construct a DFA for the following language:

 $L = \{x \in \Sigma^* \mid \text{The base-3 number } 0.x \text{ is in the Cantor set} \}$

6 Review of Definitions and Theorems

Alphabet

An *alphabet* Σ is a finite, non-empty, set of symbols.

String

A string over an alphabet Σ is a finite sequence of characters from Σ . The *length* of a string s, denoted |s|, is the number of characters in s. The *empty string*, denotes ε , is the string of length 0, i.e., $|\varepsilon| = 0$. The *concatenation* of strings s and t, denoted $s \circ t$ (also denoted s||t), is the string obtained by appending t to the end of s. $\Sigma^{\mathbf{k}}$ denotes the set of all strings of length k over Σ .

 Σ^* denotes the set of all strings over Σ , i.e.,

$$\Sigma^* = \bigcup_{k=0}^{\infty} \Sigma^k = \varepsilon \cup \Sigma^1 \cup \Sigma^2 \cup \dots$$

Language

An *language* over an alphabet Σ is a set of strings $L \subseteq \Sigma^*$.

DFA

A deterministic finite automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- 3. $\delta: Q \times \Sigma \to Q$ is the *transition function*,^{*a*}
- 4. $q_0 \in Q$ is the *start state*, and
- 5. $F \subseteq Q$ is the set of accept states.^b

 $^a{\rm A}$ transition function maps each state and input symbol to a next state. $^b{\rm Accept}$ states are also called final states.

Definition of accepting computation

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$ and a string $w = w_1...w_n \in \Sigma^*$, **M accepts w** if and only if $\exists r_0, r_1, ..., r_n \in Q$ such that:

1. $r_0 = q_0$

2.
$$\forall i \in \{1, ..., n\}, \delta(r_{i-1}, w_i) = r_i$$

3. $r_n \in F$

Definition of the language accepted by a DFA

For a DFA M, define

$$\mathbf{L}(\mathbf{M}) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$$

called "the language recognized by M."

Regular Language

A language L is **regular** if and only if \exists DFA M such that L(M) = L.

Theorem

Every finite language is regular.

Theorem

The class of regular languages is closed under **complement**, union, intersection. That is, if L is regular, then \overline{L} is regular, if L_1 and L_2 are both regular, then $L_1 \cup L_2$ and $L_1 \cap L_2$ are both regular. Where

$$\overline{L} = \Sigma^* \setminus L = \{ w \in \Sigma^* \mid w \notin L \}$$
$$L_1 \cup L_2 = \{ w \in \Sigma^* \mid w \in L_1 \text{ or } w \in L_2 \}$$
$$L_1 \cap L_2 = \{ w \in \Sigma^* \mid w \in L_1 \text{ and } L_2 \}$$