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Determine which of ε, 11, 010, 10, 0101 is accepted by this DFA.

q0 q1 q2

0

1

1
0

0, 1

We start at the start state and ”follow” the given string step-by-step through
the DFA and check if it ends in an accept state. Specifically,

• ε is not accepted since the sequence of states in its computation is (q0),
and q0 is not an accept state.

• 11 is accepted since the sequence of states in its computation is (q0, q1, q1),
and q1 is an accept state.

• 010 is not accepted since the sequence of states in its computation is
(q0, q0, q1, q2) and q2 is not an accept state.

• 10 is not accepted since the sequence of states in its computation is
(q0, q1, q2) and q2 is not an accept state.

• 0101 is accepted since the sequence of states in its computation is (q0, q0, q1, q2, q1)
and q1 is an accepting state.
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The DFA state diagram below is defined on the alphabet Σ = {a, b, c}. Write
out its formal definition (as a 5-tuple). When specifying the transition function
δ, draw a table.

q0 q1 q2

q3

a

b, c

c

a

b

a

c

a, b, c

b

So we have D = {Q,Σ, δ, q0, F} where:

• Q = {q0, q1, q2, q3}

• Σ = {a, b, c}

• δ is described as

a b c
q0 q1 q3 q3
q1 q1 q2 q3
q2 q1 q2 q3
q3 q3 q3 q3

• q0 is the start state

• F = {q1} is the set of accept states

Note that q3 is a dead/reject/bad state.1 We could also not draw this q3 state
because for DFAs, we have a convention that when there are missing transitions,
it means that they will go to a dead/reject/bad state. However, in the formal
specification of a DFA, we have to include all states.

1A ”dead” state is a state q that isn’t an accept state, and for every symbol σ, we have
δ(q, σ) = q
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Draw DFAs that recognize the following languages:

(a) L = {w ∈ {a, b}∗ | w does not contain exactly two a′s}
We saw in class that the complement of a regular language is regular, i.e.,
if L is regular, then L is regular. Sometimes, it is easier to construct a DFA
for L, then by the construction we saw in class, flip all accept and reject
states to arrive at a DFA for L.

We have L = {w ∈ {a, b}∗ | w contains exactly two a′s}, so a DFA for L
would be as below. It is not hard to see that the following is a DFA for L.

q0 q1 q2 q3

b
a

b
a

b
a

a,b

And so, the DFA for L would be:

q0 q1 q2 q3

b
a

b
a

b
a

a,b
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(b) L = {w ∈ {a, b}∗ | w has even length and an odd number of a’s}
Here, L is the intersection of two simpler languages. Namely, L = L1 ∩ L2

where
L1 = {w ∈ {a, b}∗ | w has even length}

L2 = {w ∈ {a, b}∗ | w has an odd number of a’s}

Let’s construct the DFAs for L1 and L2, then apply the construction we
saw in class to arrive at a DFA for L.

The DFA for L1 is:

q0 q1

a,b

a,b

The DFA for L2 is:

q′0 q′1

a
b

a

b

Now by the Cartesian product construction in class, the DFA for L would
be:

q0, q
′
0 q1, q

′
1

q1, q
′
0 q0, q

′
1

bb

a

a

bb

a

a
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(c) L = {11, 101, 010, 0110}

qepsilon

q1 qaccept

q0 q01 q011

q10

qreject

1

1

0

1

0

1

0

0

1

0,1

0,1

0

0
1

This DFA has a different state for each proper prefix of any string in the
language (note that we can do that because the language is finite, so there
are finitely many such prefixes), and an additional accepting state and a
rejecting state. When the input is a string in L the DFA will end the
computation in qaccept, and when the string is not in L it will end up in
qreject.

Here, qreject is a dead/reject/bad state, which can also be omitted from the
graph for simplicity. We could have removed qreject and all transitions to
it by convention mentioned above.

Additionally, you can always name the states in a way that can help make
things more clear.

5



4

Given the DFA, specify the language it recognizes:

(a) DFA M :

q0 q1 q2 q3 q4

1 1 1 1

1

0 0 0 0 0

How to approach this:

First, we can inspect which states are accept states.

Here, {q1, q2, q3, q4} are the accept states.

We can then inspect some strings that are accepted by the DFA and some
strings that are rejected by the DFA. For example, 0, 11111, 011111,
0101010101, 1111111111 are some of the strings that are rejected by this
DFA. 01, 010, 011, 0101, 1, 10, 11, 111111111 are some of the strings that
are accepted by the DFA.

We can find that the strings that are rejected by the DFA always have {0,
5, 10, 15, 20, ...} number of 1.

Solution:

This DFA recognizes the language below:

L = {w ∈ {0, 1}∗|the number of 1’s in w is not an integer multiple of 5}
We can see that for any string, if the computation of M gets to qi, it means
we have seen i mod 5 1’s so far. The only strings not accepted are the ones
where the number of 1s is an integer multiple of 5 (Note that 0 is also an
integer multiple of 5).
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(b) DFA N:

q0 q1 q2

q3

0

1

1

0

0,1

0,1

How to approach this:

Similarly, we can first inspect which states are accept states.

Here, {q2} is the accept state. And we can easily tell that q3 is a dead/reject/bad
state.

We can then inspect some strings that are accepted by the DFA and some
strings that are rejected by the DFA. For example, 0, 00, 1, 11, 000, 001,
100, 101 are some of the strings that are rejected by this DFA. 01, 010,
011, 0101 are some of the strings that are accepted by this DFA.

We can tell that the DFA is only accepting strings that start with a prefix
01.

Solution:

This DFA recognizes the language below:

L = {w ∈ {0, 1}∗|w starts with the prefix 01}
Any string that starts with 01 will have it’s computation start with the
states (q0, q1, q2) and then remain in q2 for the rest of the string, thus it is
accepted. Any string that does not start with 01, either starts with 1 , and
then its computation goes from q0 to q3 and stays in q3; or starts with 00
and then the computation starts with (q0, q1, q3), and then stays in q3.

Note:

Note that here q3 is a dead/reject/bad state and can be omitted like below:

q0 q1 q2

0 1

0,1
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