
COMS W3261: Computer Science Theory.
Instructor: Tal Malkin
Date: September 2024

Handout 3: The Myhill-Nerode Theorem and Implications

1 Overview

The Myhill-Nerode theorem is a fundamental result in the theory of regular languages. It
provides a characterization of regular languages, and hence can be used to prove whether
or not a language L is regular. It can also be used to find the minimal number of states in
a DFA which recognizes L if L is regular. In fact, this theorem is at the heart of efficient
DFA minimization algorithms. Here we present the Myhill-Nerode theorem, and give some
examples applying it to both regular and non-regular languages.

This handout was written by Tal Malkin, based in part on material written by 2017 TA
Michael Tong, 2024 TAs Hans Shen and Hellen Zhao, and lecture notes by Luca Trevisan.
The Sipser textbook has the Myhill-Nerode theorem as part of its solved exercise 1.52 (with
the equivalence relation defined in problem 1.51). The textbook by Hopcroft, Motwani,
Ullman has a more extensive treatment in section 4.4.

This handout is recommended reading for interested students, and you may use the
Myhill-Nerode theorem to solve problems on homeworks and exams, if you want to. However,
it is not part of the required material for class this semester, and you will not be assumed
to know this theorem.

2 The Myhill-Nerode Theorem

A key concept underlying the Myhill-Nerode theorem is the distinguishing extension.

Definition 2.1. Let L ⊆ Σ∗ be any language over the alphabet Σ. For x, y ∈ Σ∗ we call
z ∈ Σ∗ a distinguishing extension of x and y if exactly one of xz and yz are in L (where xz
is the concatenation of x and z). If such a z exists, we say that x and y are distinguishable
by L; otherwise we say x and y are indistinguishable by L.

The intuition behind this definition is that if two strings x, y are distinguishable by L,
then in any possible DFA for L (if there is one), the computation of the DFA on x and on y
must end up in two different states. This is because if x and y reach the same state in the
DFA, then for any extension z, xz and yz will reach the same state. This is the key idea
that allows to prove the following lemma.

Lemma 2.2. Let L ⊆ Σ∗ be any language over the alphabet Σ. Suppose there is a set with
k distinct strings {x1, . . . , xk} such that for any i 6= j, xi and xj are distinguishable by L.
Then there does not exist a DFA with fewer than k states that recognizes L.

It is not hard to check that for any language L, indistinguishability-by-L is an equivalence
relation:

COMS W3261, Computer Science Theory, Handout 3: The Myhill-Nerode Theorem and Implications, p. 1

Proposition 2.3. Let L ⊆ Σ∗ be a language. Define ∼L to be the relation on Σ∗ where
x ∼L y iff x and y are indistinguishable by L. Then ∼L is reflexive, symmetric, and transitive
so that ∼L is an equivalence relation on Σ∗.

Now recall that an equivalence relation ∼ on a set S induces equivalence classes which
partition S into subsets of elements related to each other by ∼. For example, let ∼ be a
relation on the set of integers (denoted Z) defined by a ∼ b iff a ≡ b (mod 3). Then ∼ is an
equivalence relation and it partitions Z into three equivalence classes [0], [1], [2] defined by
[i] = {n ∈ Z | n ≡ i (mod 3)}.
Remark 2.4. If x ∈ L and y 6∈ L, then x and y are distinguishable by L: we can take the
distinguishing extension to be the empty string ε. Thus, each equivalence class will contain
strings which are either all in L or all not in L.

We are now ready to state the Myhill-Nerode theorem.

Theorem 2.5. Let L ⊆ Σ∗ be a language. Then L is regular if and only if the number of
equivalence classes of ∼L is finite. Furthermore, if L is regular then the number of equivalence
classes of ∼L is also the number of states in the minimal DFA recognizing L.

Proof. We provide a sketch of the proof here. We need to prove the following three statmenets:

1. If L is regular, then ∼L has finitely many equivalence classes.

2. If ∼L has finitely many equivalence classes, then L is regular.

3. If ∼L has finitely many equivalence classes, then the number of equivalence classes is
the number of states in the minimal DFA recognizing L.

Proof of 1: We will prove the contrapositive. Suppose ∼L has infinitely many equivalence
classes. That means that there is a set of infinitely many strings (one from each equivalence
class), such that every two of them are distinguishable by L. Now by Lemma 2.2, for any
number k we take, there cannot be a DFA with k states recognizing L. Thus, there’s no
DFA (with any finite number of states) recognizing L, meaning L is not regular.

Proof of 2: If ∼L has finitely many equivalence classes, we will prove that L is regular by
constructing a DFA (and this DFA will also be used to prove part 3).

As a reminder, for a string x the notation [x] refers to the equivalence class containing x,
that is [x] is the set of all strings y so that x ∼L y. So if x ∼L y, then [x] and [y] are equal
and denote the same equivalence class.

An important observation is that when x ∼L y, for any string w we have [xw] = [yw].
This is because if x and y are indistinguishable, then for all strings z ∈ Σ∗, xz ∈ L if and
only if yz ∈ L. This includes strings of the form z = wu, where u is any string. Since for
any string u, xwu ∈ L if and only if ywu ∈ L, we know xw ∼L yw, so [xw] = [yw].

With this in mind, we construct a DFA (Q,Σ, δ, q0, F) for L as follows.

Q We will have one state corresponding to each equivalence class [x] of ∼L.

q0 The start state is [ε], the equivalence class containing the empty string.

F As mentioned in Remark 2.4, every equivalence class contains strings that are either all in
L or all not in L. We define F to to be the set of states that correspond to equivalence
classes [x] for x ∈ L.

COMS W3261, Computer Science Theory, Handout 3: The Myhill-Nerode Theorem and Implications, p. 2

δ For a state/equivalence class [x] and character a ∈ Σ, let the DFA transition from [x]
to [xa], that is δ([x], a) = [xa]. We need to check that this function is well-defined
(if [x] = [x′], we don’t want δ([x], a) = [xa] and δ([x′], a) = [x′a] to be two different
outputs). But indeed, as mentioned earlier, if [x] = [x′], then [xz] = [x′z] for all strings
z, including the character a.

Now that we’ve given a valid definition of a DFA, our final step is to show that this DFA
does indeed recognize L. Let x = x1x2 . . . xn be any string. Inputting this into the DFA, our
DFA will start at [ε], then move to state [x1], then to [x1x2], and so on until it ends in state
[x1 . . . xn]. By construction, [x1 . . . xn] = [x] is an accepting state if and only if x ∈ L. Our
DFA indeed recognizes L, so L is regular.

Proof of 3: Above we constructed a DFA for L that has the same number of states as the
equivalence classes of ∼L. Furthermore, by Lemma 2.2, there cannot be any DFA for L with
fewer states than the number of equivalence classes. Thus, the DFA constructed above is a
minimal DFA for L.

Using the Myhill-Nerode Theorem. The Myhill-Nerode theorem is useful for regular
languages, allowing us to break the language into its most essential pieces, namely the
equivalence classes, which correspond to the minimal DFA for the language. The ideas
discussed above are also at the heart of efficient DFA minimization algorithms (which we are
not presenting here). The key idea is that, as mentioned above, in any DFA for a language,
all strings that end up in the same state, must be in the same equivalence class. On the
other hand, strings that end up in two different states may still be in the same equivalence
class. In this case, those two states are said to be equivalent, and can be combined into one
state without changing the behavior of the DFA.

The Myhill-Nerode theorem is also very useful in order to prove that a language L is
not regular. To do so, we need to show that the number of equivalence classes is infinite.
This can be done by coming up with infinitely many strings such that no two of them are
equivalent (i.e., every pair of them is distinguishable by L).

3 Examples

3.1 Regular Languages

Example 3.1. Let L = {01n | n ≥ 0}. What are the equivalence classes? First notice that ε
is distinguishable from all other strings in {0, 1}∗, so it’s in its own equivalence class. Indeed,
if w is a non-empty binary string then w0 is not in L but ε0 = 0 is. Another equivalence
class consists of strings which are not in the right ”format”, since then no matter what
extension z is added the string would still not be in the language. This would include strings
which start with 1 and strings which contain more than one 0. A third equivalence class
consists of the strings in L (do you see why for this language all strings in L are in the same
equivalence class?). These are the only 3 equivalence classes, since from the definition of L,
every string is either in L, or is empty, or starts with 1 or has more than one 0. Since there
are 3 equivalence classes we know that L is regular, and has a minimal DFA with 3 states

On the other hand, consider the following minimal DFA:

COMS W3261, Computer Science Theory, Handout 3: The Myhill-Nerode Theorem and Implications, p. 3

q0start q1

qbad

0

1

0

1

0, 1

It is now clearer exactly how the equivalence classes relate to states: each equivalence
class simply consists of the strings which cause the DFA to be in the same state. Indeed, the
initial state has no arrows going to it, and thus only corresponds to the string ε. The state
qbad refers to the strings with ”improper format,” which the DFA agrees are those strings
which start with 1 or have more than one 0. And finally the state q1 refers to the strings in
the language. Indeed, the fact that L itself is contained entirely in one equivalence classes
corresponds to the fact that the minimal DFA has only one accepting state.

Example 3.2. For any n ∈ N, define the language

Ln = {w ∈ {0, 1}∗ | the n-th to last symbol in w is 1}

We show that for any n, the language Ln is regular, and the minimal DFA recognizing it has
2n states.

There are 2n strings of length n. We will prove that every pair of them has a distinguishing
extension, thus each one is in a different equivalence class with respect to ∼Ln . Consider
any two strings w = w1 . . . wn ∈ {0, 1}n and w′ = w′1 . . . w

′
n ∈ {0, 1}n where w 6= w′. Since

w 6= w′, they must differ in at least one location. Take some i ∈ {1, . . . , n} such that wi 6= w′i,
which means one of wi, w

′
i is 0 and the other one is 1. Choose an extension z of length i− 1,

e.g., take z = 0i−1. The n-th to last bit in wz is wi, and the n-th to last bit in w′z is w′i, one
of which is 0 and one of which is 1. Thus, one of wz,w′z is in Ln and the other one is not,
so w,w′ are distinguishable.

We have proved that Ln has at least 2n equivalence classes (one for each string of length
n). We now claim that Ln has exactly 2n equivalence classes. Indeed, it is not hard to see
that every string w of length |w| > n is equivalent to its n-bit suffix, and every string w of
length |w| < n is equivalent to the n-bit string 0n−|w|w. Thus, the minimal DFA for Ln has
exactly 2n states.

We note that in contrast, for any n there is an NFA with n+ 1 states for Ln.

3.2 Non-Regular Languages

Below are two examples we have proven in class are not regular, using the pumping lemma.
Here we reprove them using the Myhill-Nerode theorem. In the next handout we will see
examples of non-regular languages where using the pumping lemma to prove it is hard or
impossible, but using the Myhill-Nerode theorem works.

Example 3.3. Let L = {w ∈ {0, 1}∗ | the number of 0s in w is the same as the number of 1s
in w}. We will show that L has infinitely many equivalence classes, and thus is not regular.
Consider all strings of the form 0k, for any k ≥ 0. These are infinitely many strings, and we
claim that no two of them are equivalent. Indeed, for any k 6= j, consider the strings x = 0k

and y = 0j. Choosing the extension z = 1k gives xz = 0k1k which is in L, and yz = 0j1k

which is not in L. Thus, each equivalence class of L can contain at most one string of the
form 0k, so there must be infinitely many equivalence classes. So L is not regular.

COMS W3261, Computer Science Theory, Handout 3: The Myhill-Nerode Theorem and Implications, p. 4

Example 3.4. Let L = {w ∈ {a, b}n | w is a palindrome}. We will prove that this language
is not regular, by showing that it has infinitely many equivalence classes. Again, we can do
this by coming up with an example of infinitely many strings so that no two are equivalent.
We consider all strings of the form ak for k ≥ 0, and show that no two of them are equivalent.
Take x = ak, y = aj for any k 6= j. Choosing the extension z = bak gives xz = akbak ∈ L, and
yz = ajbak 6∈ L. Therefore, all such pairs ak, aj are distinguishable, and we have infinitely
many equivalence classes, so L is not regular.

Note: there are many other possible infinite sets of strings we could use where every
pair is distinguishable. In fact, in this example one could prove that every string is in its
own equivalence class, namely no two strings are equivalent. But the proof we gave above is
simpler, and suffices to show L is not regular.

COMS W3261, Computer Science Theory, Handout 3: The Myhill-Nerode Theorem and Implications, p. 5

