
COMS W3261: Computer Science Theory, Fall 2024
Yihan Shen, Hellen Zhao

Handout 4B: Solutions to Practice Problems

1. L1 = {0n1m|n ̸= m}. This can be proved non-regular by all three methods, although in
this case the pumping lemma is the most involved, while the other ways are simpler.

Proof by Pumping Lemma:
First, we show an INCORRECT way of applying the pumping lemma (a failed attempt).
Given p is the pumping length guaranteed by the Pumping Lemma, suppose we choose the
simple string w = 0p1p+1.

According to the Pumping Lemma, we can write w as w = xyz, where:

• xyiz ∈ L1 for all i ≥ 0,

• |xy| ≤ p,

• |y| > 0 (i.e., y is non-empty and can only consist of 0s, since the first p characters of
w are all 0s).

By our choice of w, we know that y = 0k for some k > 0. When we pump substring y i
times, this introduces i − 1 extra copies of y (because the original word had one copy of
y already). Thus, the string becomes xyiz = 0p+k(i−1)1p+1. To conclude that that L1 is
not regular, we need to show that there exists i such that the resulting string is not in the
language, i.e., p + k(i − 1) = p + 1. If we knew that k = 1, we could have chosen i = 2.
However, we cannot assume k = 1 – we only know 1 ≤ k ≤ p. So if for example k = 2, we
get that p+ k(i− 1) ̸= p+1 (no matter what i we choose), so the string is still in the form
of 0n1m where n ̸= m, meaning it still is in the language.

Thus, pumping this choice of string does not lead to a contradiction with the Pumping
Lemma, so let’s try a different choice of string.

Instead, let us choose the string w = 0p1p+p!. This string is in L1 because p ̸= p+ p!.

Now, we apply the Pumping Lemma. For any way to write w = xyz, where |xy| ≤ p and
|y| > 0, it must hold that y = 0k for some k > 0. The goal is to pump y to achieve the
same number of 0s and 1s. If we pump y i times and consider w′ = xyiz = 0p+(i−1)k1p+p!,
we must choose i such that:

(i− 1)k + p = p! + p

This works because p! is divisible by any k > 0, which ensures that by selecting the ap-
propriate i (namely i = p!/k + 1), we can make the number of 0s and 1s equal, i.e., the
resulting string is no longer in L1. Thus, we conclude that L1 is not regular.

1

Proof by Closure Properties
Assume towards contradiction that the language L1 = {0m1n | m ̸= n} is regular, then,
we know that its complement, Lc

1, is also regular, since regular languages are closed under
complement. We consider the following two languages: Leq = {0n1n | n ≥ 0}. This is
the language of strings with equal numbers of 0s and 1s, which we know from class is not
regular. On the other hand, Lall = {0m1n | m,n ≥ 0}, which contains all strings consisting
of any number of 0s followed by any number of 1s, is regular (again, we showed this in
class).

We can express Leq as
Leq = Lc

1 ∩ Lall,

Since regular languages are closed under intersection, Leq would also be regular, but we
know that it is not, so this leads to a contradiction. Therefore, our assumption is incorrect
and L1 cannot be regular.

Proof by Myhill-Nerode Theorem
We just need to show that there are infinite equivalence classes under ∼L1 . We claim that
the strings 0q, q ≥ 0, are all distinguishable from each other. Let q ̸= r, and we just need
to show that 0q ̸∼L1 0r. Take z = 1q as a distinguishing extension. Note that 0q1q /∈ L1

but 0r1q ∈ L1. Thus, 0p ̸∼L1 0r for all p, r ≥ 0, so there are infinitely many equivalence
classes for ∼L1 . Thus, by Myhill-Nerode, L1 is not regular.

2. L2 = {ww|w ∈ {a, b}∗}

Proof by Pumping Lemma:
Assume for the sake of contradiction that L2 is regular, and let p be the pumping length.

We choose the string w = apbapb, which is in the language. According to the pumping
lemma, w can be split into 3 pieces, w = xyz, such that |xy| ≤ p, |y| > 0, and for all i ≥ 0,
xyiz ∈ L2. Since the first p characters of w are a, it must be that y = ak where 0 ≤ k ≤ p
(by parts 1 and 2 of the pumping lemma).

Let i = 3. The new string is w′ = xyiz = ap+2kbapb, which is not in the language. We have
arrived at a contradiction, and thus L2 is not regular.

Proof by Myhill-Nerode Theorem:
Consider two nonequal strings w ̸= s in {a, b}∗. Let z = w, so that wz = ww ∈ L and
sw ̸∈ L. We have identified a distinguishing extension for w and s, which implies that w
and s are pairwise distinguishable by L2.

Since w and s were arbitrarily chosen, any pair of nonequal strings must be pairwise
distinguishable. So each string must form its own equivalence class. Because there are
infinitely many strings, there must be infinitely many equivalence classes. By the Myhill-
Nerode theorem, this means L2 is not regular.

2

3. L3 = {12n|n ≥ 0}

Proof by Pumping Lemma:
Assume for the sake of contradiction that L3 is regular. Let p be the pumping length.

Consider w = 12
p
. w ∈ L3 and its length is |w| = 2p > p (this can be proven by in-

duction for any p > 0). According to the pumping lemma, w can be split into 3 pieces,
w = xyz, such that |xy| ≤ p, |y| > 0, and for all i ≥ 0, xyiz ∈ L3. Then the pieces must be
of the following form: x = 1a, y = 1b, and z = 1c, where a+b+c = 2p, a+b ≤ p, and b > 0.

Let i = 2. The new string is w′ = xyiz = 1a12b1c. Therefore, |w′| = 2p + b > 2p because
b > 0, and we know b ≤ p < 2p, since |xy| = a+ b ≤ p. Adding 2p to the second inequality,
we get |w′| = 2p + b < 2p + 2p = 2p+1. Since 2p < |w′| < 2p+1, the length of w′ cannot be
a power of two, so w′ is not in the language. This is a contradiction, so L3 is not regular.

Proof by Myhill-Nerode Theorem:
It would suffice to show that any two strings in L3 have a distinguishing extension, as
there are infinitely many such strings, so this would imply there are an infinite number of
equivalence classes.

Let x = 12
m

and y = 12
n
for any nonnegative integers m < n. The string z = 12

m
is a

distinguishing extension. We can see xz = 12
m+2m = 12

m+1 ∈ L3 whereas yz = 12
n+2m .

But m < n implies that 2m < 2n and 2m + 2n < 2n + 2n = 2n+1. Because 2n < |yz| =
2m + 2n < 2n+1, yz is not in the language. Since xz ∈ L3 and yz ̸∈ L3, they are pairwise
distinguishable by L3.

This is true for all pairs of strings in L3, so there must be infinitely many equivalence
classes under ∼L3 . By the Myhill-Nerode theorem then, L3 is not regular.

4. For the alphabet {a, b, c}, define

L4 = {cnw|n ≥ 0, w ∈ {a, b}∗, and if n is odd then w = wR}

This is an example of a non-regular language that satisfies the pumping lemma - so we
cannot use the pumping lemma to prove non-regularity (there won’t be a contradiction).
Below we elaborate on this, and then show two alternative solutions using the other two
methods we saw.

Why Pumping Lemma won’t work to get contradiction
First, we will show that this language satisfies the pumping lemma, even though it is Not
a regular language. We need to show that there exists a pumping number p such that for
any string w ∈ L4, |w| ≥ p, we can never derive a contradiction with the pumping lemma.
Set the pumping number to p = 2. We need to show that for any string cnw ∈ L4 with
|cnw| ≥ 2, that there exists a parsing cnw = xyz with |xy| ≤ 2, |y| ≥ 1 such that for any
i ≥ 0, xyiz ∈ L4.

3

Case 1: n is odd. Then, w is a palindrome. Take the parsing x = ϵ, y = c, z = w. Clearly
|xy| = 1 ≤ 2 and |y| = 1 ≥ 1. Note that for any i ≥ 0, xyiz = cicn−1w = cn+i−1w. If
n+ i− 1 is even we trivially have xyiz ∈ L4, and if n+ i− 1 is odd then we have xyiz ∈ L4

as w is a palindrome.

Case 2: n is even. Set x = ϵ, y = first two characters of cnw (these exist since |cnw| ≥ 2),
z = the remainder of the string. If n = 0, then x, y, z ∈ {a, b}∗ and so xyiz ∈ {a, b}∗ for
any i ≥ 0. Thus, since xyiz begins with no c’s, it begins with an even number of c’s and
so xyiz ∈ L4. If n ̸= 0, then n ≥ 2, and so y = c2. Thus, for any i ≥ 0, xyiz = cn+2(i−1)w
where w ∈ {a, b}∗. But note that since n is even, n+2(i−1) is always even, and so xyiz ∈ L4.

In either case, we have a parsing cnw = xyz such that for any i ≥ 0, xyiz ∈ L4. Therefore,
the pumping lemma holds for L4.
Note that the pumping lemma holding for L4 tells us nothing about whether or not L4 is
regular. Next we prove it’s not regular using two alterantive methods.

Proof by Myhill-Nerode Theorum
We need to show that there are infinite equivalence classes under ∼L4 . We claim that the
strings can, n ≥ 0, are all distinguishable from each other. Let n ̸= m, and we need to show
that can ̸∼L4 ca

m. Take z = ban as a distinguishing extension. Note that canban ∈ L4 since
anban is a palindrome. However, camban /∈ L4 since c appears an odd number of times, and
amban is not a palindrome as m ̸= n. Thus, can ̸∼L4 cam for all n ̸= m;n,m ≥ 0, and so
there are infinitely many equivalence classes for ∼L4 . Thus, by Myhill-Nerode, L4 is not
regular.

Proof by Closure Properties
Alternatively, one can prove this using a combination of closure properties and the pumping
lemma. Supposed that L4 is regular. Let L5 = {cw | w ∈ {a, b}∗}. It is not hard to show
that L5 is regular (we leave this as an exercise). Thus, since regular languages are closed
under intersection, we get that Lr = L4 ∩ L5 is also regular.

However, we can see that Lr = L4 ∩ L5 = {cw | w ∈ {a, b}∗, w = wR}.
Now, we can use the pumping lemma to prove that Lr cannot be regular (we leave this as
an exercise – it is very similar to how we proved in class that the langauage of palindromes
is not regular).

We proved that if L4 were regular, then Lr would be regular, but we know that Lr is not
regular, so we have a contradiction, and conclude that L4 is not regular.

4

