
COMS W3261: Computer Science Theory.
Instructor: Tal Malkin

Handout 5: Example from Class (Subset Construction, and more)

In class, we considered the following language over the alphabet Σ = {0, 1}:

L = {xy | x has an even number of 1s, y has an even number of 0s}

The first time we saw this example, we had just defined DFAs and regular langauges,
and asked whether this language is regular. Based on what we learned up to that point,
answering this question was hard. Coming up with a DFA seems hard, because as we read
the input from left to right we can’t tell where we should parse the input (where x ends and
y begins), and if we try one parsing and it doesn’t work, we cannot go back on the input
and try again (the input symbols have been consumed – a DFA can’t go back). So at that
point in class, this could seem like some intuition that the language may not be regular. On
the other hand, we didn’t yet know how to prove a language is not regular, and perhaps
there’s some clever way to build a DFA for this language after all, some trick that will allow
you, using only finitely many states, to figure out whether the input word can be parsed
in this way. It turns out the answer is yes – the language is regular. Figuring it out with
just the definition of DFAs is possible, but requires some creativity and intuition (coming
up with the right approach and solution), and mathematical sophistication (proving that
it works).1 In contrast, coming up with an NFA is much easier, and from there we can
get a DFA by applying the subset construction, which can be done systematically without
requiring creativity. This is one way that different characterizations of regular languages
(such as via NFAs) are helpful, even though ultimately they are equivalent to (have the
same computational power as) DFAs.

In this note we show several ways to prove L is regular and to construct a DFA for it,
along the way practicing some of what we learned in class, such as the subset construction.

1 Proof of regularity using closure

From the definition of the L (and the definition of concatenation of languages), we see that
L can be expressed as a concatenation of two languages:

L = {x | x has an even number of 1s} ◦ {y | y has an even number of 0s}

It is easy to show that each of the underlying languages is regular (we’ve seen this in class
several times). Since we proved that the class of regular languages is closed under concate-
nation, we can conclude that L is regular.

If we further want to actually create a DFA for L, we could do it by first constructing a
DFA for each of the underlying languages, then using the construction for an NFA recognizing
the concatenation of two regular languages, and then applying the subset construction. This
is essentially what we do in the next sections.

1See Section 4 for a characterization of strings in the language –one coud potentially prove this charac-
terization directy from the language definition.

COMSW3261, Computer Science Theory, Handout 5: Example from Class (Subset Construction, and more), p. 1

2 An NFA for this language

We saw the following NFA for this language in class – it’s the same NFA you get by applying
the construction for closure under concatenation (as just mentioned above), but you can
also directly construct the NFA (we saw it in class before we even defined concatenation of
languages). Our informal correctness proof was that for this NFA, the ε-transition can be
taken at most once in any possible computation path on a string, and that corresponds to
where we parse the string. The computation path ends in an accepting state if that parsing
works. A string is in the laguange if and only if there exists some parsing that works, namely
if and only if there exists some accepting computation path of this NFA. But this is exactly
the definition of NFA acceptance, so the NFA recognizes L.

Astart B

C D

1

1

0 0

ϵ

0

0

1 1

3 From NFA to DFA: Subset Construction

We proved in class that for any language recognized by an NFA, there is a DFA recognizing
the same language (namely, the language is regular). This is proved constructively, via the
subset construction, that transforms an NFA to an equivalent DFA. In this construction, each
state in the DFA corresponds to a subset of states of the NFA. Transitions are determined
based on imagining all possible ways to perform the transition in the NFA, examining what
possible subset of states in the NFA this would lead to, and then transitioning to the (unique)
state in the DFA that corresponds to that subset. We now apply the subset construction to
the NFA above, to get a DFA.

The start state, which we will denote by S0, corresponds to {A,C}, since in the NFA
the start state is A, and C is ε-reachable from it. Now we must add one transition labeled
0 and one transition labeled 1 going out from S0. In the NFA, a 0 transition from A goes to
A, and then might also take a ε-transition to reach C, and a 0 transition from C goes to D.
Therefore, in the DFA, a 0 transition from S0 = {A,C} goes to a new state S1 = {A,C,D}.
Next, in the NFA, a 1 transition from A goes to B and a 1 transition from C goes to C, so
therefore in the DFA, a 1 transition from S0 = {A,C} will go to a new state S2 = {B,C}
We continue to add 0 and 1 transitions from every new state, until there are no more states
to add. The resulting DFA is the following.

COMSW3261, Computer Science Theory, Handout 5: Example from Class (Subset Construction, and more), p. 2

S0start S1

S2 S3

S4

0

1

0

1

0

1

0

1

0

1

where the correspondence between DFA states and subsets of NFA states is as follows:

� S0 corresponds to {A,C}

� S1 corresponds to {A,C,D}

� S2 corresponds to {B,C}

� S3 corresponds to {B,C,D}

� S4 corresponds to {B,D}

The accepting states are all those corresponding to a subset containing at least one
accepting state from the NFA. In this case the only accepting state in the NFA is C, and so
we mark S0, S1, S2, S3 as accepting, while S4 is not.

Note that we could in general have additional states in the DFA corresponding to all other
subsets of states of the NFA (in this case, having 16 DFA states). But as we were constructing
this DFA, only 5 such states were reachable from the start state (after adding {S0, . . . , S4}
there were no transitions that need to go to new states not previously encountered).

4 Bonus: Understanding and Improving this DFA

[This section is not part of the required class material]. By looking at the above DFA, we
may notice that we can collapse the states S1, S3 to the same state, since once you get to
either of them, your string will be accepted no matter what comes next. This gives the
following smaller DFA:

COMSW3261, Computer Science Theory, Handout 5: Example from Class (Subset Construction, and more), p. 3

S0start S1

S2

S4

0

1

0,1

0

1

0

1

We have explained above how we came up with this DFA. However, even without under-
standing how we got there, you can easily verify that the above is indeed a DFA, and you
can try running it on various strings and checking that it indeed gives the correct output
with respect to our example language.

You can further examine this DFA to understand the language better. For example, it is
apparent from the DFA that any string that starts with 0 is accepted – can you prove that
indeed any string that starts with 0 can be parsed as xy satisfying the required properties?

As mentioned above, it is possible (but hard) to come up with the above DFA directly
from the language. Here’s one possible explanation of how (or the meaning of each state).
First, notice that if a string w has an even number of 0s then it is in the language, since
we can parse it into xy where x = ε and y = w.2 Next, we focus on strings w with an odd
number of 0s. We claim that such a string is in the language if and only if it has a prefix
with an even number of 1s and an odd number of 0s. Indeed. if w with an odd number of
0s has such a prefix, we can write w = xy where x is that prefix and y to be the rest of the
string. The number of 1s in x is even, and the number of 0s in y is the total number in w
minus the number of 0s in x, namely odd minus odd, which is even. Hence this string is in
L. Conversely, if a string w with an odd number of 0s has a parsing w = xy that puts it
in the language, the prefix x has an even number of 1s (by definition), and a number of 0s
that is the total in w minus the number of 0s in y, namely odd minus even, which is odd.
Overall, we proved that a string is in the language if and only if it has an even number of
0s, or it has a prefix with an even number of 1s and an odd number of 0s.

With this in mind, the state diagram becomes clearer. Each state corresponds to the
parity of each symbol in the string read so far, except that the first time we get to even 1s and
odd 0s we don’t care anymore about the rest of the string, it will be accepted. Specifically,
state S1 corresponds to any string which has a prefix where the parity of the number of
0/1 is odd/even respectively, and the rest of the states correspond to strings without such a
prefix, where the parity of the number of 0/1s is even/even (state S0), even/odd (state S2),
and odd/odd (state S4).

It can be shown that these four types of strings exactly correspond to the four equivalence
classes of ∼L from the Myhill-Nerode theorem (see handout 3). However, even without
figuring this out, you can still use the Myhill-Nerode theorem to prove that the above 4-
state DFA is the smallest possible one for this language, as we show next.

2A similar argument shows that a string with an even number of 1s is also in the language, but we don’t
need this fact here, it suffices to check the cases of even 0s and odd 0s.

COMSW3261, Computer Science Theory, Handout 5: Example from Class (Subset Construction, and more), p. 4

Applying the Myhill-Nerode theorem to show minimality

To show that the above 4-state DFA is minimal, we need to show four different strings that
are all in different equivalence classes under ∼L. We take one string that ends up in each
of the states, and then prove that any pair of these strings has a distinguishing extension
(namely no two states are equivalent) – using the DFA as a guide makes it easier to identify
such extensions. Concretely, let’s take the following four strings:

{ε, 0, 1, 10}

and the following distinguishing extensions:

� For 10 and any of the other three strings: take the extension ε (check 10 ̸∈ L while the
other strings are in L)

� For ε, 0: take 10 (check 10 ̸∈ L while 010 ∈ L)

� For ε, 1: take 0 (check 0 ∈ L while 10 ̸∈ L)

� For 0, 1: take 0 (check 00 ∈ L while 10 ̸∈ L)

We have shown four distinguishable strings, so we know any DFA for L must have at
least four states. Since we already have a 4-state DFA, we know it is minimal.

5 Regular Expression for this language

We can also use regular expressions to prove that the language L is regular:

� Regular expression generating {x | x has an even number of 1s}: 0∗(10∗10∗)∗

� Regular expression generating {y | y has an even number of 0s}: 1∗(01∗01∗)∗

Since L is the concatenation of the above two languages, a regular expression generating L
is:

0∗(10∗10∗)∗1∗(01∗01∗)∗

Of course, there are other possible regular expressions for L. If you want to translate
the above to a DFA for L, you can first construct an NFA that is equivalent to this regular
expression, using the constructions we saw in class when we proved closure of regular lan-
guages under the regular operations, and then apply the subset construction to get a DFA.
What you get using these constructions is too large to include here.

COMSW3261, Computer Science Theory, Handout 5: Example from Class (Subset Construction, and more), p. 5

