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1 NFA

Problem 1. Draw an NFA that recognizes:

(a) All strings that contain 101.

q0 q1 q2 q3start

0, 1

1 0 1

0, 1

(b) L = {w ∈ {0, 1}∗ | w has exactly two 0’s or an even number of 1’s}

s

even

q0

odd

q1 q2

ϵ

ϵ

1

1

0 0

1 1 1

00

start

Problem 2.

(a) What is the language recognized by this NFA?

The state q0 is not accepting. The language recognized by this NFA is {}.
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(b) What is the language recognized by this NFA?

Here, q0 is an accepting state, so ϵ is accepted. However, since there are no outgoing transition
from q0, there’s no accepting computations for any string of length > 0. The language recognized
by this NFA is {ϵ}.

Note: {} ≠ {ϵ}

Problem 3. Convert this NFA to an equivalent DFA using the subset construction:

∅ {q0}

{q0, q1} {q0, q2}

{q1}

{q1, q2}

{q2}

{q0, q1.q2}

0
1

1

0

0

1
start

Don’t forget to note the accept states!
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2 Closure Properties of regular languages

a) Closure under union

Problem 4.
L1 = {w ∈ {0, 1}∗|w has an even number of 0’s}
L2 = {w ∈ {0, 1}∗|w does not have two consecutive 1’s}

even odd

0

0
1 1

start

DFA for L1

q0 q1 q2

0

1

1

0

0, 1

start

DFA for L2

even odd q0 q1 q2

q′

0

0
1 1

start

1

1

0

0, 1

0

ϵ
ϵ

start

NFA for L1 ∪ L2

b) Closure under concatenation

Problem 5.
L1 = {w ∈ {0, 1}∗|w has an odd number of 1′s or exactly two 0s}.
L2 = {w ∈ {0, 1}∗|w ends with 101}.

ϵ

ϵ

1

1

0 0

1 1 1

00

start

NFA for L1

1, 0

1 0 1
start

NFA for L2

c) Closure under Kleene Star

Problem 6. We provide examples where the attempts fail – there are many other examples that work,
of course.

1. Let L = {10}. Then L∗ = {(10)n|n ≥ 0}. Although ϵ /∈ L, by definition of Kleene star operation
ϵ ∈ L∗. Here, we see that attempt 1 does not accept the empty string.
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ϵ

ϵ

1

1

0 0

1 1 1

0

ϵ

ϵ

1 0 1
1, 0

0

start

NFA for L1 ∪ L2

q0 q1 q2
1 0

start

DFA for L

q0 q1 q2
1 0

ϵ

start

Incorrect attempt 1 for L∗

2. Let L = {w ∈ {0, 1}∗| w ends with 01}. Then L∗ = {ϵ} ∪ {w ∈ {0, 1}∗| w ends with 01}. Let’s
draw the NFA for L and the wrong NFA for L∗.

q0 q1 q2
0 1

0, 1

start

L

q0 q1 q2
0 1

0, 1

start

ϵ

Incorrect attempt 2 for L∗

The NFA on the right accepts ϵ and the strings from {w ∈ {0, 1}∗| w ends with 01}. However, it
accepts additional bad strings such as 000 which is not in L∗. In fact, it recognizes Σ∗ because of
q0’s transition to itself for 0 and 1. Hence the NFA on the right does not recognize L∗.

3. This construction is actually the same as the construction in attempt 2. For the same L = {w ∈
{0, 1}∗| w ends with 01}, let’s draw the NFA for L and the wrong NFA for L∗.

q0 q1 q2
0 1

0, 1

start

L

q0 q1 q2
0 1

0, 1

start

ϵ
ϵ

Incorrect attempt 3 for L∗

Again, while this incorrectly constructed NFA accepts ϵ and the strings from {w ∈ {0, 1}∗| w ends
with 01}, it also accepts Σ∗. This is because any computation that reaches q0 will automatically
be accepted due to the ϵ-transition to the new accepting state.

4. Let’s look at L = {10}. Then L∗ = {(10)n|n ≥ 0}

q0 q1 q2
1 0

start

L

q0 q1 q2
1 0

start

ϵ

Incorrect attempt 4 for L∗
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The new NFA accepts strings {ϵ, 10}. However, it does not accept any other string in L∗ such as
1010.

d) More operations

For 7a, I will give a very formal proof so that you have an idea on how to do these proofs in full detail.

Problem 7a (Reverse). Proof idea: to construct a DFA B that recognizes LR, we duplicate the
DFA A that recognizes L, reverse all the arrows, define start state of B as the accepting states of A, and
define the accepting state of B as the start state of A. Since there could be multiple accepting states in
A (which are now the “start states” in B and since there can only be one start state), we create a new
start state that ϵ transitions to all these states, getting an NFA that recognizes LR.

There exists a DFA A = (QA,Σ, δA, q0, FA) such that L(A) = L. Construct the following NFA
B = (QB ,Σ, δB , q

′
0, FB) where:

• QB = QA ∪ {q′0}. We carry over the old states from A, but add a new start state q′0.

• δB(q
′
0, ϵ) = FA. The new start state has epsilon transitions to all the previously accepting states

in A.

• For all r ∈ QB and a ∈ Σ, δB(r, a) = {q ∈ QA|δA(q, a) = r}. We define the transition from each
state r ∈ QB as ending in all the states that have transition to the same r in A. In other words,
we are reversing the arrows.

• FB = {q0}. The accepting state in B is the start state of A.

q0

f1

f2
start

DFA for L

q0

f1

f2

q′0

ϵ

ϵ

start

NFA for LR

Now we prove that NFA B recognizes LR. To prove this we must show that:

wR ∈ LR ⇐⇒ NFA B accepts wR

Forward Direction: wR ∈ LR =⇒ NFA B accepts wR.
Let w = a1, a2 . . . , an ∈ L, n ≥ 0 and wR = an, . . . , a2, a1 ∈ LR. Since w ∈ L, for all a1, ..., an there
exists some qi, ri ∈ QA such that δA(qi, ai+1) = ri+1, 0 ≤ i ≤ n− 1 where q0 is the start state of A and
rn ∈ FA. And by our definition of NFA B, rn ∈ FA implies that there exists a start state q′0 ∈ QB such
that δ(q0, ϵ) = r. And again by our definition of B, for all δA(qi, ai+1) = ri+1, 0 ≤ i ≤ n− 1, there exists
δB(ri+1, ai+1) = qi ∈ QB . And finally, since FB = {q0}, and there exists δB(r1, a1) = q0, the string
wR = an, . . . , a2, a1 ∈ LR has an accepting computation in NFA B from its start state q′0 to its accepting
state q0.

Reverse Direction: NFA B accepts wR =⇒ wR ∈ LR

This is similar to the forward direction but instead we argue that since NFA B accepts wR, there is an
accepting computation path from q′0 ∈ QB to FB = {start state q0 ∈ QA}. (Being informal here) And by
our construction of NFA B, then there must be a computation path in NFA A from q0 ∈ QA to qn ∈ FA

for the string w = a1a2 . . . an and so w ∈ L = L(A). If w ∈ L, then by definition of LR, wR ∈ LR. We
have prove that if B accepts wR, then wR ∈ LR.

NFA B recognizes LR and therefore LR is regular.
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Problem 7b. It is important to understand what min(L) does. When we say w ∈ L and proper
prefix of w is not in L, min(L) operation throws away all accepted strings whose prefixes can also be ac-
cepted. For example, if qi, qj ∈ FA, and there is a string w = xy ∈ L where δ∗A(q0, x) = qi, δ

∗
A(qi, x) = qj ,

then w /∈ min(L). In other words, every transition from an accepting state will lead to a reject state.

For a DFA A = (QA,Σ, δA, q0, FA) such that L(A) = L, we will construct DFA B = (QB ,Σ, δB , q
′
0, FB)

such that

• QB = QA∪{qreject}, where qreject is the reject state. We need this additional reject state to capture
all transitions coming from an accepting state.

• q′0 = q0. The start state of A is the same as the start state of B

• FB = FA. A and B have the same accepting states.

• For all a ∈ Σ and q ∈ FA = FB , δB(q, a) = qreject. All transitions coming from an accepting state
will reach the reject state qreject

• For all a ∈ Σ, δB(qreject, a) = qreject. Once reached qreject, the DFA’s state does not change anymore.

• For all a ∈ Σ and q /∈ FB ∪ qreject, δB(q, a) = δA(q, a). Transitions from all other states remain
unchanged.

To prove this is correct, we need to show that:

w ∈ min(L) =⇒ DFA B accepts w

w /∈ min(L) =⇒ DFA B rejects w

First statement: w ∈ min(L) =⇒ DFA B accepts w.
Note that min(L) ⊂ L. If w ∈ min(L), then w ∈ L, and on input w DFA A ends in an accepting state
q ∈ FA = FB . Secondly, since w ∈ min(L), no proper prefix of w is in L. This means, for any x such
that w = xy, |y| > 0, x /∈ L. On input x DFA A will end on a state q /∈ FA = FB . This means that when
computing w, DFA A and B only reach accepting state on the last character. Therefore DFA B accepts w.

Second statement: w /∈ min(L) =⇒ DFA B rejects w.
If w /∈ min(L), then w /∈ L or there exist some proper prefix of w ∈ L.

• If w /∈ L, then w will end on a non-accepting state in DFA A. Since FA = FB , this state is also
non-accepting in DFA B. w will be rejected by DFA B.

• If there exists some proper prefix w ∈ L, then there is a smallest proper prefix x ∈ L where
w = xy, |y| > 0. Then DFA B will reject w because any the transitions after seeing x will go to
and remain on qreject.

3 Regular Expressions

Problem 8. Describe in words the language expressed by these regular expressions:
Answer.

(a) 0∗1∗

This is the set of binary strings that has any number of 0’s, followed by any number of 1’s.
{0n1m|n,m ≥ 0}

(b) (01)∗

This is the set of binary strings with repeating pattern of 01. {(01)n|n ≥ 0}

(c) (0∗1∗)∗

This is the set of all binary strings. L = {0, 1}∗

(d) (0 ∪ 1)∗

This is also the set of all binary strings! Think about why the regular expression in part c represents
the same language as part d
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(e) 0∗(10∗1)∗0∗

This is the set of all binary strings with even number of 1s

Problem 9. Construct regular expressions for the following languages.

(a) This is simple. We concatenate 10 with the language of all strings over the alphabet.
Answer: 10(0 ∪ 1)∗

(b) Notice that the position of the two 0s can be anywhere in an accepted string. How do we express
this in a regular expression? The idea is to fix the two 0’s in a position and pad the 1s around it
like this: 1∗01∗01∗. This ensures that there can be any number of 1’s in any position while there
are only two 0’s.
Answer: 1∗01∗01∗

(c) Odd number of 0s mean there are 2n + 1 number of 0’s, where n ≥ 0. So we can fix a single 0 in
the expression and cover the remaining 2n using a Kleene star operation on two 0’s. But it will not
be sufficient to say something like 1∗01∗(00 ∪ 1)∗. This forces all the 0’s except the first 0 to be in
pairs (e.g. 1010011) and doesn’t recoginze strings like 1010101. Instead, remember that we already
showed how to recognize strings with only two zeroes (in any position) in the previous example.
We can simply apply Kleene start to it to account for 2n number of 0s! Then add a 1∗0 to the
front to account for the extra odd 0. Exercise: Does it matter if we add the odd 0 to the front or
back? Why?
Answer: 1∗0(1∗01∗01∗)∗

(d) This is a challenging one. Don’t worry if you were not able to solve it on your own! The idea here
is to observe the language and see what patterns can be exploited.

Let L be the language in question. The regular expression for the language with all strings over
{a, b, c} is (a ∪ b ∪ c)∗. I observe that for any occurance of b in L, I can prevent the formation of
abc by adding c before b, a after b, or another b before and/or after b. This causes a substring
like . . . abc . . . to become . . . acbc . . . , . . . abac . . . , . . . abbc . . . or . . . abbbc . . . . I can do this by
(a∪ cb∪ ba∪ bb∪ bbb∪ c)∗. Note that (bb∪ bbb)∗ is the same as {bn| where n >= 2}. This accounts
for legal substrings such as ab2n+1c where n >= 1. Now if we check back, there is no way for us
to construct any string with substring abc. But we are not done yet. By forcing b’s to be followed
by b or a, or preceded by b or c, we have ommitted good strings that can start or end with b no
matter what comes before it. Example, bc or ab. To fix this we add (ϵ ∪ b) to the start and end to
allow for the addition of b there.
Answer: (ϵ ∪ b)(a ∪ cb ∪ ba ∪ bb ∪ bbb ∪ c)∗(ϵ ∪ b)

Problem 10.Convert the following NFA to a GNFA. Then convert the GNFA into a regular expression
by ripping states (we note that ripping states in a different order can result in a different – but equivalent
– regular expression).

q0

q1

q2

1
1

0

0, 1 0start

Step 1: Construct GNFA
Recall a GNFA is simply a NFA where the transition arrows may have any regular expressions as labels,
instead of only a ∈ Σ or ϵ. Given an arbitrary DFA or NFA, convert it to a GNFA as follows:

7



• New start state s with ϵ-transitions to original state

• New accest state f which will be the only accept state. Add ϵ-transitions from old accept states
to f

• Replace transitions labeled with multiple symbols by transition labeled wih union of symbols

• All missing transitions labeled with ∅. We omit this here for clarity.

q0

q1

q2

s

f

1
1

0

0 ∪ 1 0ϵstart

ϵ

Step 2: Remove q1
When we remove a state from a GNFA we have to account for all the transitions going into and coming
out of that state. Hence, consider all pairs of edges (q → q1, q1 → q′) where q, q′ ̸= q1

• q2 → q1, q1 → q0: (0 ∪ 1)1 ≡ 01 ∪ 11

• q2 → q1, q1 → q2: (0 ∪ 1)0 ≡ 00 ∪ 10

q0s fq2

1

ϵstart
0

01 ∪ 11

00 ∪ 10

ϵ

Step 3: Remove q2

• q0 → q2, q2 → f : 0(00 ∪ 10)∗

• q0 → q2, q2 → q0: 1 ∪ 0(00 ∪ 10)∗(01 ∪ 11)

q0s f

1 ∪ 0(00 ∪ 10)∗(01 ∪ 11)

ϵ
start

0(00 ∪ 10)∗

Step 4: Remove q4

• s → q0, q0 → f : (1 ∪ 0(00 ∪ 10)∗(01 ∪ 11))∗0(00 ∪ 10)∗

s fstart
(1 ∪ 0(00 ∪ 10)∗(01 ∪ 11))∗0(00 ∪ 10)∗
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The regular expression from the start to finish state is (1 ∪ 0(00 ∪ 10)∗(01 ∪ 11))∗0(00 ∪ 10)∗

Problem 11. Convert (01)∗(10∗ ∪ 0) into an NFA. We will not try to optimize the NFA or use our
intuition about the language, but rather just use the constructions we saw in class for closure, in order
to practice these constructions. The order of operation is (),∗ , ◦,∪. Hence, let’s break down the regular
expression appropriately.

1. Build NFA that recognizes (01)∗

(a) First, construct NFA that recognizes 01

(b) Apply Kleene star to get a NFA that recognizes (01)∗

2. Build NFA that recognizes (10∗ ∪ 0)

(a) Build NFA that recognizes (10∗)

(b) Build NFA that recognizes 0

(c) Apply union operation to get NFA that recognizes (10∗ ∪ 0)

3. Apply concatenation to get NFA that recognizes (01)∗(10∗ ∪ 0)
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Step 1a: Construct NFA that recongizes 01

q0 q1 q2start
0 1

Step 1b: Apply Kleene star to get a NFA that recognizes (01)∗

To apply Kleene star operation, we add a new start state that ϵ-transitions to the old start state and the
accepting states ϵ-transitions back to the start state s0. The new start state is also an accepting state.

s0 q0 q1 q2start
ϵ 0 1

ϵ

Step 2a: Build NFA that recognizes (10∗)

r0 r1
1

0

start

Step 2b: Build NFA that recognizes 0

t0 t1
0

start

Step 2c: Apply union operation to get NFA that recognizes (10∗ ∪ 0)
To apply union, we add an extra start state that epsilon transitions to all the old start states.

r0 r1

s1

t0 t1

1

0

ϵ

0
ϵ

start
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Step 3: Apply concatenation to get NFA that recognizes (01)∗(10∗ ∪ 0)
To apply concatenation, add ϵ-transition from accepting states s and q2 to the state s1. Then remove s0
and q2 from the set of accepting states for the new NFA

s0 q0 q1 q2

s1

r0 r1

t0 t1

start
ϵ 0 1

ϵ

ϵ

ϵ

ϵ

ϵ

1

0

0

The above NFA recognizes the language generated by (01)∗(10∗ ∪ 0)
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