Handout 9a - Countability, Turing Reductions, Proving Undecidability

Owen Keith and Owen Terry

COMS 3261 Fall 2024

1 Countability

Definition 1. A set S is countable if S is finite or $|S| = |\mathbb{N}|$. We say S is uncountable otherwise. Examples of countable sets include the set of all integers, \mathbb{Z} , and the set of all rational numbers, \mathbb{Q} .

Definition 2. An equivalent definition for countability is, a set S is countable if and only if each element of S can be written as a unique finite string.

Definition 3. Recall that two sets S and T have the same cardinality, denoted as |S| = |T|, if there exists a bijection $f: S \to T$. If no such bijection exists, then we say that S and T have different cardinalities and write $|S| \neq |T|$.

Definition 4. Recall the definitions of injective, surjective, and bijective functions from the Discrete Math Handout: Let S and T be sets and $f: S \to T$ be a function. Then we say that f is injective (or one-to-one), or an injection, if for any $x, y \in S$, f(x) = f(y) implies that x = y. We say that f is surjective (or onto), or a surjection, if for all $y \in T$, there exists some $x \in S$ such that f(x) = y. We say that f is bijective, or a bijection, if f is both injective.

Given these definitions, the above discussion translates to saying that a set S has n elements if and only if there exists a bijection $f : \{1, 2, ..., n\} \to S$.

Example 1. Let \mathbb{Z} be the set of all integers, and let $\mathbb{N} = 0, 1, 2, 3, ...$ be the set of all non-negative integers. Then $|\mathbb{N}| = |\mathbb{Z}|$: consider the function $f : \mathbb{N} \to \mathbb{Z}$ given by:

$$f(n) = \begin{cases} n/2 & \text{if n is even} \\ -(n-1)/2 & \text{if n is odd} \end{cases}$$

Theorem 1. Any countable union of countable sets is countable, i.e. if $\{E_i\}_{n=1}^{\infty}$ are countable sets, then

$$S = \bigcup_{n=1}^{\infty} E_n$$

is countable.

Theorem 2. Any finite product of countable sets is countable, i.e. if $E_1, ..., E_n$ are countable sets, then

$$E_1 \times ... \times E_n = \{(a_1, ..., a_n) \mid a_i \in E_i\}$$

is countable.

Theorem 3. If L is a countable set, then every subset of L is countable, i.e., every set S where $S \subseteq L$ is countable.

Example 2. Let Σ be a finite alphabet, then Σ^* is countable.

Proof. Notice that for every $n \in \mathbb{N}$ that Σ^n is finite; for any string $s \in \Sigma^n$ there are $|\Sigma|$ choices for each character of s, so $|\Sigma^n| = |\Sigma|^n$ is finite. Now recall that

$$\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$$

is a countable union of finite sets, so Σ^* is countable as a result.

Some more examples of sets we saw in class that are countable:

- { $\langle M \rangle \mid M$ is a TM} is countable, since each TM encoding $\langle M \rangle$ can be written as a unique finite string.
- $\{L \mid L \text{ is recognizable}\}$ and $\{L \mid L \text{ is decidable}\}$ are countable.
- Every subset $L \subseteq \Sigma^*$ is countable.

Here are some examples of uncountable sets:

- \mathbb{R} , the set of all real numbers is uncountable. We saw in class the diagonalization argument for proving this.
- The set of all languages, i.e., the set of all subsets of Σ^* is uncountable.
- The power set of the natural numbers, $\mathbb{P}(\mathbb{N})$, which is the set of all subsets of \mathbb{N} , is uncountable. In general, for a set S, if |S| is non-finite, then $\mathbb{P}(S)$ is uncountable.

2 Turing Reductions and Undecidability

Definition 5. We say a language A is Turing-reducible to a language B, written $A \leq_T B$, if given an oracle that decides B, there exists a decider for A.

We use the \leq sign here because, intuitively, A is "easier" than (or equal to) B. Essentially, $A \leq_T B$ means that if B is decidable, so is A. This gives us the following theorem:

Theorem 4. If $A \leq_T B$ and B is decidable, then A is decidable.

and taking the contrapositive gives us the following (very useful) corollary:

Corollary 1. If $A \leq_T B$ and A is undecidable, then B is undecidable.

Thus, if we know that a language is undecidable, we can use this to show many other languages are undecidable!

2.1 Examples of undecidable languages

- 1. $A_{TM} := \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$
- 2. $E_{TM} := \{ \langle M \rangle \mid M \text{ is a TM with } L(M) \neq \emptyset \}$
- 3. $HALT_{TM} := \{ \langle M, w \rangle \mid M \text{ is a TM that halts on } w \}$
- 4. $EQ_{TM} := \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

2.2 Exercises

- 1. Prove that $HALT_{TM} \leq_T A_{TM}$.
- 2. Prove that $L = \{ \langle M, D \rangle \mid M \text{ is a TM}, D \text{ is a DFA}, \text{ and } L(M) = L(D) \}$ is undecidable.
- 3. Prove that the following are equivalent: $A \leq_T B, \overline{A} \leq_T B, A \leq_T \overline{B}, \overline{A} \leq_T \overline{B}$.

3 Using Rice's theorem to prove undecidability

Note that many of the undecidable languages we have learned about fit a common pattern. That is, they are languages of the form $\{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ satisfies...}\}$. We call such languages "properties of recognizable languages." Formally,

Definition 6. *P* is a property of recognizable languages if $P \subset \{\langle M \rangle \mid M \text{ is a TM}, \text{ and } L(M_1) = L(M_2) \iff \langle M_1 \rangle \in P, \langle M_2 \rangle \in P\}.$

In fact, there is a very convenient way to tell if a language of this form is decidable, using the following theorem:

Theorem 5. Rice's theorem: Let P be a non-trivial property of recognizable languages. That is, P is a property of recognizable languages such that $P \neq \emptyset$ and $P \neq \{\langle M \rangle \mid M \text{ is a TM}\}$. Then P is not decidable.

We can prove the theorem by showing that A_{TM} Turing-reduces to any non-trivial P. Since A_{TM} is undecidable, P cannot be decidable.

Since Rice's theorem seems to apply to a very broad class of languages, it is worth pointing out some types of languages to which it does **not** apply:

- 1. Trivial languages, $L = \emptyset$ or $L = \{ \langle M \rangle \mid M \text{ is a TM} \}$
- 2. Languages (decision problems) where the elements (inputs) are not encodings of TMs $\langle M \rangle$. This is because such languages do not represent TM properties.
- 3. Languages for which the TM property depends on the implementation (for example, $\{\langle M \rangle \mid M \text{ is a TM that always moves right}\}$).

3.1 Exercises

Does Rice's theorem apply to the following languages? If not, determine whether or not the language is decidable with another method.

- 1. $L = \{ \langle M \rangle \mid M \text{ is a TM and } M \text{ accepts } 0 \}$
- 2. $L = \{ \langle M \rangle \mid M \text{ is a TM and } M \text{ has exactly two states} \}$
- 3. $L = \{ \langle M \rangle \mid M \text{ is a TM and } M \text{ rejects } 0 \}$
- 4. $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$
- 5. $L = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \overline{A_{TM}} \}$
- 6. $L = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is recognizable} \}$
- 7. $L = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is decidable} \}$