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1 Countability

Definition 1. A set S is countable if S is finite or |S| = |N|. We say S is uncountable
otherwise. Examples of countable sets include the set of all integers, Z, and the set of all
rational numbers, Q.

Definition 2. An equivalent definition for countability is, a set S is countable if and only
if each element of S can be written as a unique finite string.

Definition 3. Recall that two sets S and T have the same cardinality, denoted as |S| = |T |,
if there exists a bijection f : S → T . If no such bijection exists, then we say that S and T
have different cardinalities and write |S| ≠ |T |.

Definition 4. Recall the definitions of injective, surjective, and bijective functions from the
Discrete Math Handout: Let S and T be sets and f : S → T be a function. Then we say
that f is injective (or one-to-one), or an injection, if for any x, y ∈ S, f(x) = f(y) implies
that x = y. We say that f is surjective (or onto), or a surjection, if for all y ∈ T , there
exists some x ∈ S such that f(x) = y. We say that f is bijective, or a bijection, if f is both
injective and surjective.

Given these definitions, the above discussion translates to saying that a set S has n
elements if and only if there exists a bijection f : {1, 2, ...n} → S.

Example 1. Let Z be the set of all integers, and let N = 0, 1, 2, 3, ... be the set of all
non-negative integers. Then |N| = |Z|: consider the function f : N → Z given by:

f(n) =

{
n/2 if n is even

−(n− 1)/2 if n is odd

Theorem 1. Any countable union of countable sets is countable, i.e. if {Ei}∞n=1 are countable
sets, then

S =
∞⋃
n=1

En

is countable.
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Theorem 2. Any finite product of countable sets is countable, i.e. if E1, ..., En are countable
sets, then

E1 × ...× En = {(a1, ..., an) | ai ∈ Ei}
is countable.

Theorem 3. If L is a countable set, then every subset of L is countable, i.e., every set S
where S ⊆ L is countable.

Example 2. Let Σ be a finite alphabet, then Σ∗ is countable.

Proof. Notice that for every n ∈ N that Σn is finite; for any string s ∈ Σn there are |Σ|
choices for each character of s, so |Σn| = |Σ|n is finite. Now recall that

Σ∗ =
∞⋃
n=0

Σn

is a countable union of finite sets, so Σ∗ is countable as a result.

Some more examples of sets we saw in class that are countable:

• {⟨M⟩ | M is a TM} is countable, since each TM encoding ⟨M⟩ can be written as a
unique finite string.

• {L | L is recognizable} and {L | L is decidable} are countable.

• Every subset L ⊆ Σ∗ is countable.

Here are some examples of uncountable sets:

• R, the set of all real numbers is uncountable. We saw in class the diagonalization
argument for proving this.

• The set of all languages, i.e., the set of all subsets of Σ∗ is uncountable.

• The power set of the natural numbers, P(N), which is the set of all subsets of N, is
uncountable. In general, for a set S, if |S| is non-finite, then P(S) is uncountable.

2 Turing Reductions and Undecidability

Definition 5. We say a language A is Turing-reducible to a language B, written A ≤T B,
if given an oracle that decides B, there exists a decider for A.

We use the ≤ sign here because, intuitively, A is ”easier” than (or equal to) B. Essentially,
A ≤T B means that if B is decidable, so is A. This gives us the following theorem:

Theorem 4. If A ≤T B and B is decidable, then A is decidable.

and taking the contrapositive gives us the following (very useful) corollary:

Corollary 1. If A ≤T B and A is undecidable, then B is undecidable.

Thus, if we know that a language is undecidable, we can use this to show many other
languages are undecidable!

2



2.1 Examples of undecidable languages

1. ATM := {⟨M,w⟩ | M is a TM that accepts w}

2. ETM := {⟨M⟩ | M is a TM with L(M) ̸= ∅}

3. HALTTM := {⟨M,w⟩ | M is a TM that halts on w}

4. EQTM := {⟨M1,M2⟩ | M1,M2 are TMs and L(M1) = L(M2)}

2.2 Exercises

1. Prove that HALTTM ≤T ATM .

2. Prove that L = {⟨M,D⟩ | M is a TM, D is a DFA, and L(M) = L(D)} is undecid-
able.

3. Prove that the following are equivalent: A ≤T B,A ≤T B,A ≤T B,A ≤T B.

3 Using Rice’s theorem to prove undecidability

Note that many of the undecidable languages we have learned about fit a common pattern.
That is, they are languages of the form {⟨M⟩ | M is a TM and L(M) satisfies...}. We call
such languages ”properties of recognizable languages.” Formally,

Definition 6. P is a property of recognizable languages if P ⊂ {⟨M⟩ | M is a TM, and
L(M1) = L(M2) ⇐⇒ ⟨M1⟩ ∈ P, ⟨M2⟩ ∈ P}.

In fact, there is a very convenient way to tell if a language of this form is decidable, using
the following theorem:

Theorem 5. Rice’s theorem: Let P be a non-trivial property of recognizable languages.
That is, P is a property of recognizable languages such that P ̸= ∅ and P ̸= {⟨M⟩ |
M is a TM}. Then P is not decidable.

We can prove the theorem by showing that ATM Turing-reduces to any non-trivial P .
Since ATM is undecidable, P cannot be decidable.

Since Rice’s theorem seems to apply to a very broad class of languages, it is worth
pointing out some types of languages to which it does not apply:

1. Trivial languages, L = ∅ or L = {⟨M⟩ | M is a TM}

2. Languages (decision problems) where the elements (inputs) are not encodings of TMs
⟨M⟩. This is because such languages do not represent TM properties.

3. Languages for which the TM property depends on the implementation (for example,
{⟨M⟩ | M is a TM that always moves right}).
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3.1 Exercises

Does Rice’s theorem apply to the following languages? If not, determine whether or not the
language is decidable with another method.

1. L = {⟨M⟩ | M is a TM and M accepts 0}

2. L = {⟨M⟩ | M is a TM and M has exactly two states}

3. L = {⟨M⟩ | M is a TM and M rejects 0}

4. ETM = {⟨M⟩ | M is a TM and L(M) = ∅}

5. L = {⟨M⟩ | M is a TM and L(M) = ATM}

6. L = {⟨M⟩ | M is a TM and L(M) is recognizable}

7. L = {⟨M⟩ | M is a TM and L(M) is decidable}
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