Propositional Proof Complexity
Assignment # 2
Due: Monday April 28, 2025, 11:59pm

1. Recall the negation of the induction principle, =IND,;: the underlying variables
are x;, 1 € [n|, and the clauses are:

(i) (z1);
(ii> (m2n);

(iii) For all i € [n — 1]: (—=a; V mi41).
Give a constant-degree Polynomial Calculus refutation of =IND,,.

2. Recall the mod 2 counting principle, MOD2,,, discussed in Homework 1, that
asserts that there is no perfect matching on an odd number of vertices. The
negation of the mod 2 counting principle, =MoD2,, is a CNF formula with
underlying variables z; ; for i # j, i,7 < 2n 4+ 1 to represent whether or not
there is a matching between vertices ¢ and j. The clauses of “Mo0D2,, are of
two types:

(i) For every i < 2n+1 we have the clause (V,4; x; ;) stating that each vertex
is included in at least one matching.
(ii) Secondly, for every 4, j,k < 2n+1, ¢ # j # k, we have the clause (—x;; V

-2, 1), stating that every vertex ¢ is matched with at most one other vertex.

Recall the negation of the bijective pigeonhole principle, ~BI-PHP"*!. The
underlying variables are p; ;, i € [n+ 1], j € [n], and the clauses are:

(i) For every i € [n + 1], we have the clause (Vcppi;);

(ii) For every i € [n+ 1], j # j' € [n]: (=pi; V —pij);

(iii) For every j € [n]: (Vigm+1)Pij);

(iv)
Clauses of type (i) and (ii) express that every pigeon is mapped to exactly one
hole, and clauses (iii),(iv) express that the mapping is bijective.

v) Forevery i #¢ € [n+1], j € [n]: (—pi; V —pirj).

Prove that if -MoD2,, has a polynomial-sized Resolution refutation, then so
does the negation of the bijective pigeonhole principle, =B1-PHP”*!,

3. Search versus Decision Problems. A randomized depth-d decision tree for a

search problem S C 0,1" x [m] is a collection of decision trees 7 = {T1,...,T,}
satisfying:
(i) Each T; is a deterministic decision tree over & = xy,. .., x, with each leaf

of T; labelled by some j € [m];
(ii) For every assignment a € {0,1}", Pricgl(o, Ti(a)) € S| > 2/3.



It is known that the randomized decision tree complexity of any function is at
most the deterministic decision tree complexity squared: R(f) < DC(f)%.

In this problem you will prove that in contrast, there is no polynomial rela-
tionship between deterministic and randomized decision tree complexity for the
more general class of search problems. Assume that M = 2™ and N = 2" (so
both M and N are powers of two), and let n = 2m. Consider two functions
F :[N] — [M], and G : [M] — [N]. Since M < N, the composed function Go F’
cannot be the identity mapping, so we can define the associated total search
problem, FIND-VIOLy, n: The variables of FIND-VIOLy, v are: Fj;, i € [N],
J € [m], and Giy, k € [M], | € [n]. We view F;1,...,F;,, as the bit repre-
sentation of the element F'(i) € [M] that pigeon i is mapped to, and similarly
Gk, - .., Grp is the bit representation of the element G(k) € [N] that k is
mapped to. On input F, G, FIND-VIOLy, v (F, G) is the set of i € [N] such that
G(F(i)) # i; that is, valid solutions are elements i € [N] that are not mapped
to themselves by the composed function G o F.

(a) Prove that there are constant-error randomized decision trees solving the
search problem FIND-VIOLy n(F,G).

(b) Prove that any deterministic decision tree for FIND-VIOL, n requires
depth Q(M).

. (EXTRA CREDIT) Sherali-Adams versus Nullsatz. Recall the standard equa-
tional translation of a clause into an equivalent polynomial equation, e.g.,
(x1 V =y V x3) becomes (1 — x1)(z2)(1 — z3) = 0. In this question we will
compare Nullsatz versus SA refutations for unsat 3CNF's; in order to make this
comparison fairly, in both cases we assume the underlying field is the reals,
and the translation is equational. Let P = {p1,...,pm} be a set of polynomial
inequalities over x1, ..., z,. Recall that a Sherali-Adams refutation of P is a set
{Jo, J1, ..., Jm} of conical juntas such that Jo+>1*, J;p; = —1. In this problem
we consider the relative strength of SA refutations of unsatisfiable 3CNF's with
and without the leading junta Jj.

(a) Prove that degree-d S Ay refutations of unsat 3CNFs (translated into equa-
tions) over the reals is equivalent to degree-d NS refutations.

(b) Show that degree-d SA over the reals can simulate width-d Resolution.

(c¢) Show that degree-d SAy cannot simulate degree-d SA (over the reals) by
exhibiting a family of unsatisfiable CNF's that require Q(logn)-degree S Ay
refutations but that have SA refutations of degree O(1).

Hint: You may use parts (a),(b) from this question, in addition to results
that were discussed in class.



