FO LUgic & PEANO ARITHMETIC

Formally defined inductively by composing function symbols

Examples of terms over
$$f_{A}$$
:
 \rightarrow + so ssso : we will write as so+ssso for readabilite

First Order Formulas over Z

An J-structure M consists of

Free and Bound Variables

Defn A variable x in a formula is called free if it is not quantitied, and otherwise is called bound. A formula A is a sentence if all variables in A are quantified.

Example
$$\forall x \exists y \land (x, y, a)$$

 $\uparrow \uparrow \uparrow$
bound
variables
Convention: x, y, z denote bound variables
a, b, c " free "

Notation: M = 1 means A evaluates to true under M

(1)
$$M \models P(t_{1}, t_{k})$$
 if $P^{M}(t_{1}, t_{k}) = 1$
(2) $M \models \neg A$ if $M \nvDash A$
(3) $M \models A \lor B$ if either $M \models A$ or $M \models B$
(4) $M \models A \land B$ if $M \models A$ and $M \models B$
(5) $M \models \forall x A(x)$ if $\forall m \in M$ $M \models A(\overset{m}{\times})$
(6) $M \models \exists x A(x)$ if $\exists m \in M$ $M \models A(\overset{m}{\times})$

Define
$$\models A$$
 (A is valid) if for every model \mathfrak{M} , $\mathfrak{M} \models A$
Examples Let $\mathfrak{M} = (\mathfrak{M}, usual definitions of t, \cdot, s, o)
(1) $\mathfrak{M} \models so + sso \leq ssso$, but so $t sso \leq ssso$ is not valid
(2) $\mathfrak{M} \models \forall x \exists y (x + x = y)$, but not valid$

LK Rules

I. Structural Rules

Weakening	$\frac{\Gamma \rightarrow \Delta}{\Gamma, A \rightarrow \Delta}$	$\frac{\Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta, B}$
Exchange	<u>Γ,</u> Α, Β, Γ' → Δ Γ, Β, Α, Γ' → Δ	$\frac{\Gamma \rightarrow \Delta, A, B, \Delta'}{\Gamma \rightarrow \Delta, B, A, \Delta'}$
contraction	$\frac{\Gamma, A, A \rightarrow a}{\Gamma, A \rightarrow a}$	$\frac{\Gamma \rightarrow \Delta, A, A}{\Gamma \rightarrow \Delta, A}$

IL. Logical Rules

Negation	$\frac{\Gamma \to \Delta, A}{\Gamma, \forall A \to \Delta}$	$\frac{\Gamma, A \rightarrow \Delta}{\Gamma \rightarrow \Delta, \gamma A}$	
AND	$\frac{A,B,\Gamma \rightarrow \Delta}{A \wedge B,\Gamma \rightarrow \Delta}$	$\frac{\Gamma \rightarrow A}{\Gamma \rightarrow A} F \rightarrow A_{,B}$	
OR	$\frac{A, \Gamma \rightarrow \Delta}{A \vee B, \Gamma \rightarrow \Delta}$	$\frac{\Gamma \rightarrow \Delta, A, B}{\Gamma \rightarrow \Delta, A \vee B}$	
¥	$\frac{A(t)}{\forall \times A(x)} \stackrel{\Gamma \to \Delta}{\vdash} A$	$\Gamma \rightarrow \Delta, A(6)$ $\Gamma \rightarrow \Delta, \forall x A(x)$	b is a free variable only occurring in A
7	$\frac{A(b)}{2} \stackrel{\Gamma \to A}{ (x)} \stackrel{\Gamma \to A}{ (x)}$	$\frac{\Gamma \rightarrow A, A(t)}{\Gamma \rightarrow A, \exists x A(x)}$	J . ~

II. Logical Rules cont'd

Axion $A \rightarrow A$ Cut Rule $\Gamma, A \rightarrow \Delta$ $\Gamma \rightarrow 4, A$ $\Gamma \rightarrow \Delta$

Soundness and completeness of FO Logic
Detn A First order sequent
$$A_{1,2}, A_{k} \rightarrow B_{1,2}, B_{k}$$
 is valid iff
 $\models \neg (A_{1}, \dots, A_{k}) \lor (B_{1}, \dots, B_{k})$

Peano Anthmetic Proofs • Underlying Language $\mathcal{L}_{A} = \{0, +, \cdot, 5; =, \leq \}$. Lines are sequents over La · All rules / axioms of LK PLUS • A SET OF 6 BASIC ARIOMS (e.g. Vx Vy (X+y=Y+X)) 1 abbreviates so · INDUCTION RULE: A(b), Γ → Δ, A(b+1) $A(0), \Gamma \rightarrow \Delta, \forall x A(x)$

A constructive proof system is one in which proofs of existence implicitly contain or imply the existence of an algorithm to find the object which is proved to exist A feasibly constructive proof system: the algorithm will be feasible S_2^c, T_2^i : Restrictions of Peano anithmetic. Witnessing Theorems show proofs are feasibly constructive

Sentence	Witnessing Theorem
Vx ∂y A(x,y)	S': polytime algorithm S': algorithm in it level of polyhievanchy
	T'z: similar to s'z but PLS algorithm

$$\frac{\text{Language of Bounded Arithmetic}}{\text{Function symbols}: 0, s, t, \cdot, |x|, L^{\underline{1}}x \downarrow, \#}{\text{length of } x \in \mathbb{N}} \\ \text{Function symbols}: 0, s, t, \cdot, |x|, L^{\underline{1}}x \downarrow, \#}{\text{length of } x \in \mathbb{N}} \\ \text{in binary} \\ \text{allows polynomial growth} \\ \text{rate of terms} \\ \frac{\text{Logical Symbols}: =, =}{\text{PA (logical Symbols}: =, =} \\ \frac{\text{Logical Symbols}: = x, =}{\text{PA (logical Symbols}: =, =, =} \\ \frac{\text{Logical Symbols}: = x, =}{\text{plus bounded quantities}: \forall x \in t A(x, a), \exists x \in t A(x, a), \exists x \in t A(x, a), \exists x \in t \mid A(x, a), \exists x \in t \mid$$

Bounded Anthmetic Pr	bots (formalized in	LK)
. Lines are sequents over L		
· All rules / axioms of LK PLUS		
· A SET OF (~25) BASIC	AKIOMS	
. Rules for Bounded Quantifier	$\frac{b \leq s}{2\pi i (s, A(b), \Gamma \rightarrow A)}$	$(JA \land A \land$
	$\Delta(k) = 1$	$b \leq s f \rightarrow A A(L)$
• Restricted Induction Rule	$t \leq s, \forall x \leq s \lambda(x), P \Rightarrow d$	$\Gamma \rightarrow \Delta, \forall x \in S A(x)$
T_2^i has Ξ_1^b -IND:	$\frac{A(b)}{A(0)}, \Gamma \rightarrow \Delta, A(b+1)$ $\overline{A(0)}, \Gamma \rightarrow \Delta, A(t)$) ۲ - ۲ - ۲
S' has E' - PIND:	$\frac{A(L^{1}_{2}6J), \Gamma \rightarrow \Delta, A(b)}{A(0), \Gamma \rightarrow \Delta, A(b)}$	

$$\frac{z_{i}^{b} \text{ and } \Pi_{i}^{b} \text{ formulas}}{z_{i}^{b} : \exists x_{i} \in t_{i} \forall x_{2} \in t_{2} \exists x_{3} \in t_{3} \cdots A(a_{i} \times x_{i}, x_{2}, \cdot x_{k})}$$

i alternations

$$\Pi_{i}^{b}: \forall x_{i} \in t, \exists x_{2} \in t_{2} \dots \land A(a_{i}, x_{i}, \dots, x_{ic})$$

Let $A := \forall \alpha \exists x \in t(\alpha) B(\alpha, x)$ be a $\forall z_1^{\flat}$ formula provable in S_2^{l} then there is a function $f: N \to N$ computable in polynomial time such that $IN \models \forall \alpha B(\alpha, f(\alpha))$ (that is, over standard model of N, f finds x such that $B(\alpha, x)$ is the)

Similar witnessing theorems hold for Si, Ti, Vi=1

Translation I : From S'2 provis to Extended Frege It is helpful to think of S' as uniform proof system, and EF as the corresponding Nonuniform pf system. Translation : For any $\forall \Xi^{b}$, formula $A := \forall a \exists x \in t(a) B(a, x)$ provable in s'z, there is a sequence of propositional statements [[A]], (expressing A for all me IN, Iml=n) such that [[A]] has polysize EF proofs

Translation II : From Relativized 5'(R) proofs to AC - Frege proofs S₂ⁱ(R): Just like S₂ⁱ but with a New k-ary relation symbol R. It is helpful to think of a Σ_{i}^{b} formula of $S_{z}^{i}(R)$ as corresponding to a predicate in it there of relativized polyhierarchy Translation For any VZ' formula AR provable in S'(R), there is a sequence of propositional statements [A]) (expressing AR for all me IN, Iml=n) such that [[AR]], has quasi-poly size Aco - Frege proofs.

Translation II: From Relativized $S_2^{i}(R)$ proofs to AC_i° - Freqe proofs Example: PHP(R) = Pigeonhole principle for relation R $\forall a \left[(\exists x = a+1 \ \forall y = a \ \neg R(x,y)) \lor (\exists x, x_2 = a+1 \ \exists y = a \ (x_1 \neq x_2 \land R(x,y) \land R(x_2,y)) \right]$

Propositional Translation: $\left[PHP^{R} \right]_{n}$ (set $\alpha := n$, $n \in \mathbb{N}$) Propositional Variables $R_{i,j}$, $i = n \in \mathbb{N}$, $j \in n$ $\bigvee A = R_{i,j}$, $\bigvee \bigvee V = R_{i,j} \wedge R_{i,j} \wedge R_{i,j}$ $i \in [n+1]$ $j \in [n]$ $i, i_{2} \in [n+1]$

Step 1) "Free Cut-Free Elimination"

Let $S_{2}^{i}(R) \vdash A^{R}(\alpha) \quad A \in \mathbb{Z}_{1}^{b}(R)$ Then there is an $S_{2}^{i}(R)$ proof TI of $A^{R}(\alpha)$ with NO "free cuts"

> Free cut: A cut inference on a formula that is not from an induction axian/inference or a subformula of A

 also we can assume the only free variables in proof are those occurring in an induction inference plus a (the free variable in A) Translating E? (R) formulas to AC° formulas

Let R be binary relation, so k=2. (Same ideal $\forall k$) Let A(a) $\in E_{i}^{k}(k)$.

i,je IN corresponding propositional variables : Cij We define [[A(n)]] inductively: (1) A(a) quantifier-free, + doesn't contain R Then [[A(n)] = 1 if A(n) is valid, O otherwise (2) A(a) quantifier free, contains R. Example. A(a) = R(a, ati) v R(2a, 4a) Then [[A(n)]] = (n,n+1) ~ (2n, 4n

Translating E? (R) formulas to AC° formulas Let R be binary relation, so K=Z. (Same idea UK) Let $A(\alpha) \in E^{k}(\mathcal{K})$. (3) $A(\alpha) := \exists x \in t(\alpha) B(\alpha, x)$ Then $[[A(m)]] = \bigvee [[B(m)]]$ $m \neq t(n)$ (4) $A(\alpha) := \forall x \in t(\alpha) \quad B(\alpha, x)$ then $((A(n))) = \Lambda ((B(m)))$ met(n)