COMS E6998: Proof Complexity and Applications (Spring25) April 9, 2025

Lecture 7: Algebraic Proof Systems

Instructor: Toniann Pitasst Scribes: Hao Cui, Yongyi Wang

1 Review of Goals
We are mostly interested to develop a super-polynomial lower bounds for ACY[p]-Frege systems. There
are a few remarks on this problem we are trying to tackle:

1. Even though a super-polynomial lower bound for AC?[p] have been known for decades, we do not
even have conditional results for the Frege system.

2. No apparent lifting results between proof complexity lower bounds and circuit lower bounds have
been known.

3. Beigel-Tarui/Yao/Allender-Hertrampf Circuit Normal Form Theorems hold:

Theorem 1 ([?]). Any AC°[p] Frege Proof 7 of quasi-polynomial size can be converted into a depth
4 quasi-polynomial size ACY[p] Frerge Proof, where we have ORs in the first layer, ANDS in the
second layer, @, in the third layer, and small-ANDS at the leaves.

4. Methods of probabilistic polynomials used to prove superpolynomial lower bounds for AC[p] cir-
cuits don’t seem to work.

These observations directly motivates the study of proofs where lines are low depth ACP[p], such those
whose lines are @, o AND, or polynomials mod p.

Definition 2. A polynomial p(z1, 22, ,) over F is of the form
i in
Z iy, in)®1 """ T
(7"17"' ’Zn)el

where I is a set of n-tuples of non-negative integers and ag, ... ;,) € F for all such tuples. A system of
polynomial equations over F is a collection P of F-polynomials p

Basically, an algebraic proof system certify the unsolvability of P. In other words, P is unsolvable if
there does not exist an assignment # such that p(Z) =0 for all p € P.

2 Nullstallensatz Proof System

Theorem 3 (Hilbert’s Nullstellensatz, weak form). P = {p1, -+ ,pn} is unsolvable over algebraically
closed ' iff there exists polynomials q1,- - ,qn such that

n
Z qipi =1
i=1

1

By the above theorem, we can view the polynomials g¢i,...,¢g, such that >, ¢;p; as a proof of
unsolvability of the system P of polynomially equations over F.

Next we want to apply the above Nullstellensatz theorem to the special case wher the polynomials P
correspond to the clauses of an unsatisfiable Boolean CNF formula.

Definition 4 (Translation of Clauses to Polynomials). Let C = C1 ACoA...AC,y, be a CNF formula over
Boolean variables z1,...,x,. We define the following system of polynomial equations that correspond to
C as follows.

1. For each clause C;, we convert it to a polynomial equation as follows. As an example, suppose that
C; = (x1VaoV—xs). Then the corresponding polynomial is: p; = (1 —x1)(1 —x9)xs = 0. Note that
for any Boolean assignment « to the underlying variables, Ci(a) = 1 if and only if p;(«) = 0; thus
the assignment satisfies clause C; if and only if the assignment is a zero of p;.

2. Additionally we add n extra equations, one for each underlying variable x; in order to force Boolean

solutions: for each xj, we add the add the polynomial equation p,, = :cj2 —x; =0.

Let P be the resulting system m + n polynomial equations.
Definition 5 (Nullstallensatz Refutation for CNF). Let C = C1 A ... A C,y, be a Boolean CNF formula,

and let P be the corresponding system of polynomial equations as defined above. A Nullstallensatz (NS)
refutation of P (and thus a Nullstellensatz refutation of C) over a field F is a collection Q@ = {q1," - , Gm+n}

m+n

of polynomials such that Y " qip; = 1. The degree of the refutation is max; deg(q;), and the monomial
size of the refutation is Y, |q;|, where |¢;| is the number of nonzero monomials in q;. We define the
Nullstellensatz refutation degree of C, NS(C), to be the min degree of any NS refutation of C.

Note that the classical weak Nullstellensatz requires that we work in an algebraically closed field.
However, in our case we always add the polynomials a;zz — x; = 0 which forces all variables to be {0,1}
valued in any solution; for this reason, it suffices to work in any field (rather than in the algebraic closure
of a field).

Example 6. Consider the negation of induction ~IND,,, which consists of the following clauses:
1. (z1);
2. (mxn);
3. and for all1 <i<n-—1:—x;Vxit1).

By typical induction this is clearly unsatisfiable, and thus we wish to find an NS refutation.

1. First we convert each clause into a polynomial. Clearly, (x1) and (—x,) will be converted to 1—x1 =
0 and x, = 0 respectively, and (—xz; V x;41) will be converted to z;(1 — ziy1) = 0.

2. Consider (—x1 V x2) and (—x2 V x3). These two clauses imply (—x1 V x3). Thus, we can think of
how to derive the polynomial x1(1 — x3) from x1(1 — x2) and xz2(1 — x3). Indeed, we see that

(1 — xg) . a:l(l — 1’2) +x7 - xz(l — $3) = $1(1 — :ZJ3)

3. For any indices i, we can derive the clause (—x1V zit1) from the clauses (—x1V ;) and (—x; VTip1):
(1 =) - o1(I =) + 1 - 2(1 —2441) = 21(1 — 2441)

4. Applying the previous step for i =2 to n — 1 we eventually derive the polynomial: x1(1 — x,) = 0.
Then using this derived polynomial together with the initial polynomials 1 —x1 =0 and x, = 0, we
can derive:

l—z1+x1(1—ap) +21 -2, =1
Hence we have a NS refutation of =IND,,.

Note that our refutation has degree ©(n) since step 3 needs to be repeated ©(n) times to get to x1 = xp,
and each step we are increasing the degree of the largest polynomial in Q by 1 after multiplying (1 — z;41)
(hence the two largest terms in Q is actually just [[;—5(1 — ;) and x1 []7,(1 — ;)).

However, this is not the optimal NS refutation. We can infact use a divide and conquor method to
get a NS refutation of degree O(logn): instead of sequentially obtaining z1 = ;41 for every i, we can
combine every two consecutive terms at every step.

e For instance, in the first step we could instead obtain 1y = =3 from 1 = x2 and x9 — z3,
r3 = x5 from x3 = x4 and x4 = x5, and so on using the same method as above.

e So in the ith step we would have had a list of terms of the form
(L’] —— l’j+2i
e After log(n) many steps, we would have obtained 1 = x,, and finish in the same manner as
above.

Again, since the maximal degree of polynomials in () increase by 1 in each step, the claim upperbound
follows. In fact, this is tight:

Theorem 7. [?] Any NS refutation of =IND,, has degree Q(logn).

Automatizability of Nullstellensatz. Next we will show that Nullstellensatz is degree automatizable
with respect to Boolean CNF formulas. In particular, we have the following theorem:

Theorem 8 (Nullsatz Degree Automatizability). There is an algorithm A such that for any unsatisfiable
SCNF formula C, A(C) outputs a NS refutation of C in time n°@ | where d = NS(C); that is, where d is
the NS degree of C.

Proof. We sketch the main idea behind the above theorem.
1. Suppose C = C1 A --- A Cyy, is an unsat 3CNF

2. Let p; be the degree 3 polynomial corresponding to C;, and we suppose that the collection P =
{pi | i € [m + n]} has a degree < d NS refutation Q.

3. We can write a system of linear equations in variables ¢;; where 1 <i <m+n,t C [n] and [t| < d,
where c;; represents the coefficient in front of term ¢ in ¢; € Q.

4. For each term t # (), |t| < d, there will be an equation that says the coefficients corresponding to
term ¢ sum to 0; And for ¢ = (), we have one equation which states that the coefficients corresponding
to term ¢ sum to 1.

Since we have O(m - n%) = n@ variables and at most n°@ equations, we can solve in poly(n®@) time
(since linear programming is in P.) Note that if we do not know if d works, we can just use trial and
error to increase d one by one.

O

Recall from previous lectures, that we have proven width-size tradeoffs for Resolution. Similar degree-
(monomial)size tradeoffs exist for NS. We have the following theorem (that we won’t prove here).

Theorem 9. For any 3CNF C, if C has NS refutation of monomial size s, then it has a degree O(y/nlog s)
NS refutation

3 Polynomial Calculus (PC)

Next we define the Polynomial Calculus (PC) refutation system defined by Clegg, Edmonds and Impagli-
azzo [?]. PC is basically a dynamic version of NS, where instead of deriving a contradiction from a family
¢; of polynomial such that) . ¢;p; = 1, PC is a rule-based system which allows intermediate polynomials
to be derived, and in turn this can lead to refutations with smaller degree.

Definition 10. Let P = {p; =0,...,p; = 0} be a system of polynomial equations. A PC refutation that
P is unsolvable over a field F' is a derivation of 0 =1 from the initial polynomials p; using the following
rules:

1. From f =0 or g =0, we can derive af +bg =0 for any a,b € F;
2. From f =0 we can derive xf =0 and (1 —x)f = 0.

Definition 11. The degree of a PC refutation is the max degree over all polynomials in refutation, and
the size is the sum of sizes of all polynomials (total number of occurences of monomials).

The following theorem shows that PC can simulate NS wrt to degree, since we can construct the
polynomials ¢; in a NS refutation of a CNF by repeatedly applying the PC rules.

Theorem 12 (PC vs NS). Let C be an unsat CNF. For any field F, if there is a degree d NS refutation
of C over F, then there is also a degree d PC refutation of C over F.

On the other hand, PC refutations can have much smaller degree. This theorem was proven by [?]:

Theorem 13. NS canot simulate PC with respect to degree: there exists unsatisfiable 3SCNFs that have
degree O(1) PC refutations but require Q(n) degree NS refutations.

Note that for the negation induction we saw earlier that there exists a PC refutation of size O(1), since
every term appearing in the refutation has degree at most 3. And on the other hand any NS refutation
requires degree Q(logn); thus the induction principle witnesses a nonconstant degree separation. [7]
shows that the strong induction principle gives a linear separation between the PC versus NS degree.

Automatizability of PC. Similar to NS, we also have a degree-automatizability result of PC,

Theorem 14 ([?]). There is an algorithm A such that for any unsat 3SCNF C, A(C) outputs a PC

refutation in time n°@ where d is the minimum degree of any PC refutation of C.

The proof is more complicated than the analogous theorem for NS, and uses a modified version of
the Grobner basis algorithm which generates a generating set for any ideal I of the polynomial ring
F[Xla e aXn]

Finally, a similar size-degree tradeoff also holds for PC:

Definition 15. The monomial size of a PC refutation {{Py,--- , P,,1 = 0} is the sum of all the monomial
sizes of P;. The monomial size of an CNF F is the min monomial size over all PC refutation of it.

Theorem 16. For any SCNF C, if C has a PC refutation of monomial-size S, then C has a degree
O(v/nlogs PC refutation.

There are also other 2(n)lower bound results for PC which are tight: such as PHP and the mod-q
counting principle (this one requires the PC refutation to be over a field of characteristic not ¢ (see [?]).

4 Ideal Proof System (IPS)

4.1 Motivation

The Ideal Proof System (IPS) was defined by Grochow and Pitassi [?]; this proof system greatly gen-
eralizes NS and PC by working directly with polynomials represented as algebraic circuits. This leads
to refutations that can be much shorter than PC/NS refutations. However a important property of IPS
refutations is that while they can be verified in randomized polynomial time, they are not known to
be verifiable in deterministic polynomial time. Thus, they are not known to be a Cook-Reckhow proof
system. IPS refutations are very powerful; in fact, Grochow and Pitassi prove a nontrivial connection
between IPS lower bounds and algebraic circuit lower bound, that we will explain.

Definition 17. An IPS refutation of P = {p1,...,pm} s an algebraic circuit C(x1,...,Tn,Y1,---,Ym)
that satisfies the following properties:

1. C(x1,...,xn,p1(z), ..., pm(x)) = 1;
2. C(z1,...,2n,0,...,0) = 0.

The size of the proof is the circuit size of C', and the IPS size of P is the minimum circuit size over
all circuits C' that are IPS refutations of P.

We note that IPS refutations can be verified in randomized polynomial time (RP). To see this, we
first use the fact that PIT (polynomial identity testing) is in RP.

Theorem 18 (Swartz-Zippel). Given an algebraic circuit C over a field F', there is a randomized algo-
rithm A that runs in time polynomial in the size of C, and that has one-sided error at most 1/3 such
that: If C' computes the identically 1 polynomial, then A(C) outputs 1 with probability 1, and if C does
not compute the identically 1 polynomial, then A(C) outputs 0 with probability at least 2/3.

Using the above theorem, it is easy to see that IPS refutations can be verified in randomized polynomial
time, since each of the two properties in the definition of IPS refutation are polynomial-identity testing
properties: For the first item, we simply run the PIT algorithm on the algebraic circuit C' with the
y-variables replaced by the polynomials p1,...,pm; and for the second property, it suffices to show that
the circuit 1 — C(z1,...,2,,0,...,0) compute the identically-1 polynomial.

4.2 Properties of IPS Refutations

Grochow and Pitassi [?] prove that IPS simulates NS and PC. Furthermore than prove that IPS can even
simulate the very powerful Extended Frege (EF) proof system.

They also prove that superpolynomial lower bounds for IPS for an unsatisfiable family of CNF's implies
a longstanding algebraic circuit lower bound, namely that VNP # V P. In simple terms, superpolynomial
lower bounds implies that the permanent polynomial cannot be computed by polynomial-size algebraic
circuits, a longstanding open problem in algebraic circuit complexity that is viewed as the algebraic
analog of the P versus N P question.

References

[1] Paul Beame, Russell Impagliazzo, Jan Krajicek, Toniann Pitassi, and Pavel Pudldk. Lower bounds
on hilbert’s nullstellensatz and propositional proofs. Proceedings of the London Mathematical Society,
73(1):1-26, 1994.

[2] Samuel R Buss and Toniann Pitassi. Good degree bounds on nullstellensatz refutations of the induc-
tion principle. computational complezity, 7:162—-178, 1996.

[3] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the groebner basis algorithm to
find proofs of unsatisfiability. In Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 174-183, 1996.

[4] Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and polynomial iden-
tity testing: The ideal proof system. J. ACM, 65(6):37:1-37:59, 2018.

[5] A. Kolodziejczyk S. Buss and K. Zdanowski. Collapsing modular counting in bounded arithmetic
and constant depth propositional proofs. Transactions of the American Math Society, 367:7517-7563,
2015.

