
Non-Linear Dimension Reduction (in L2)



Non-Linear Dimension Reduction: RD → Rd

Goal: Find a low-dim. Non-linear map that preserves the relevant information

• Application dependent
• Different definitions yield 

different techniques
Some canonical techniques…

• IsoMap (Isometric Mapping)
• LLE (Locally Linear Embedding)
• LE (Laplacian Eigenmaps)
• MVU (Maximum Variance Unfolding)
• kPCA (kernel PCA)
• RP (random projections – linear!)
• NE (Nash Embedding)
• t-SNE (t-distributed Stochastic Neighbor Embedding)
• VAE (Variational AutoEncoders)



Motivation

While the data is represented in high dimensions, it usually only has a few 
degrees freedom.

Examples:

• Scanned images of handwritten characters

Representation: 28x28 pixels ( = 784 dim) 

Few attributes such as: shape, tilt and cursiveness

govern the actual written character.

• Natural processes with physical constraints - speech
Few anatomical characteristics, such as size of
the vocal chords, pressure applied, etc. govern
the speech signal.



The Manifold Hypothesis

So how can we model such data? (high representation dim., but few degrees)

properties we want:
• Small variations in the latent degrees of freedom doesn’t change the 

representation too much
• Globally, the data doesn’t conform to any assumed structure

A mathematical model: Manifold
• Geometric objects that are constrained to be locally flat 
• Since there is no global constraint, they are can be thought of as 

smooth non-linear objects



Modelling data Manifolds

We can use the manifolds to such data!

An example dataset: 
Image of a teapot from different angles 

How data is distributed in the pixel space
• Closed 1D loop (manifold)

Key Questions: 
Given samples from this manifold,
• How can we represent data low-dim?
• How can we do prediction effectively?



IsoMap (Isometric Mapping)

Goal: Find a low-dim. nonlinear map that improves that preserves the 
interpoint geodesic distances!

Idea: 
• if somehow geodesics are known, we can use something like MDS to do 

the embedding!
• Key question then: how to estimate the geodesics from data samples

How to estimate the geodesics from RHS? 

Actual, perhaps noisy, 
data samples

(observed)

Underlying data manifold
(unobserved)



IsoMap (Isometric Mapping)

Estimating geodesics from data samples

Idea: 
• Create a k-nearest neighbor graph, and compute (all-pairs) shortest paths 

between the data samples!

Now simply run MDS on the estimated geodesic distance matrix!!



IsoMap (Isometric Mapping)

An estimated geodesic via 
shortest path

Embedding in the low-
dimensional space via MDS 
(which preserves the input 

geodesic distances)

Theorem: Under suitable distributions over the underlying manifold, as neighbor-

hood size r → 0, number of samples n → ∞, nr → ∞, can show that

the shortest path → geodesic path.



IsoMap (Isometric Mapping)



IsoMap (Isometric Mapping)



IsoMap (Isometric Mapping)

Seems like IsoMap does an excellent job, isn’t then manifold embedding 
problem solved?
Nope!
The manifold needs to be globally isometric to some low-dim Euclidean space

The manifold needs to be ‘geodesically convex’



Locally Linear Embedding (LLE)

Goal: Find a low-dim. map that preserves the “local geometry”
umm… what is “local geometry”???

Since a manifold is locally linear, one can define “local geometry” as how a 
specific data point is linearly related to its neighbors.

Then, one can compute an embedding Y of the given input X such that the 
locally linear relationships between neighbors is approximately preserved!

How to formalize this?



Locally Linear Embedding (LLE)

Given: Input data X  RD x n , embedding dimension d

Step 1.

Step 2.

find linear relationship 
between neighbors

find embedded data that 
respects the local linear 

relationships

How do you do these 
optimizations efficiently?? 



Locally Linear Embedding (LLE)

Step 1.
Cost of the ith point:

We can re-write it as…

Therefore:

Notation:
• D x k  Neighbor matrix

• k x 1 weight vector

• K x 1 ones vector 



Locally Linear Embedding (LLE)

known matrix  =: G

Can be solved as a constrained 
optimization via Lagrange multipliers!

Known 

Pick any  which Wi = 1



Locally Linear Embedding (LLE)

Step 2.
We can re-write it as…

Therefore, the optimization becomes:

=

=

=

Notation:

Eigendecomposition of M, top d eigenvectors!



Locally Linear Embedding (LLE)



Locally Linear Embedding (LLE)



Laplacian Eigenmaps (LE)

Goal: Find a low-dim. map that preserves the “local geometry”
Can define local geometry as similarity between points in local 
neighborhoods!

Define similarity between points xi, xj as

Can optimize for embedding points y1,…,yn as 

Equivalent to

graph Laplacian

Eigendecomposition of L, 
bottom d eigenvectors!

Observation: 
if xi xj are far, Wij is close to zero 
and yi and yj can map anywhere

[Belkin and Niyogi ’03]



Kernel-PCA (k-PCA)

Can we kernelize PCA to implicitly do a linear dimension reduction (ie PCA) in 
a non-linear feature space?

High dimensional 
manifold data

Explicit non-linear 
feature transform

PCA
Kernel-PCA

(done implicitly)



Kernel-PCA (k-PCA)

How to kernelize PCA?

Observation:
PCA directions are the principal eigenvectors of the (centered) matrix XXT

But… we want the inner product XTX

Let X = USVT

• Since XXT = US2UT,  we are interested in finding how any datapoint x is 
projected onto the vectors U, ie the projection Utx

If data is in a feature space (X)
• Problem: cannot compute U (no efficient way to compute outer product)
• If dot product can be computed efficiently, then easy to compute V and S
• Since U = (X) V S-1

• For any datapoint (x), its projection UT (x) = S-1 V (X) . (x)  

can be computed efficiently!



Kernel-PCA (k-PCA)

We can view many of the manifold embedding methods as a special case of 
kernel PCA (with specific choice of the kernel)!

• PCA:   K = XTX  (linear kernel)

• Classical-MDS:   K  =  – ½ HDeuclH, where H is the centering matrix
(Euclidean) distance gets converted into inner product matrix K

• Isomap: K  =  – ½ HDgeodesicH
Basically MDS with geodesic distances

• Locally Linear Embedding:   A := (I – W) (I – W)T;   K = L-1 or K = (maxI – A)
W are the learned locally linear weights from LLE

• Laplacian Eigenmap:   K = L-1 or K = (maxI – L)
L is the graph Laplacian used in LE



Kernel-PCA (k-PCA)

Observation
• Many manifold embedding methods assume a specific kernel form

Idea: why don’t we directly learn the kernel which yields a good embedding?

Maximum Variance Unfolding (MVU) (aka Semi-Definite Embedding (SDE))



Maximum Variance Unfolding (MVU)

In order to find an optimal kernel for non-linear embedding, we need to 
define what we want the embedding to do.

Goal: Find a low-dim. map that preserves the “local geometry”
local geometry = distances between neighboring points!

So, how to learn a kernel that preserve the local distances?

For points xi and xj in any neighborhood

• K needs to be PSD
• ij Kij = 0 Can formulate the 

optimization as follows…



Maximum Variance Unfolding (MVU)

[Weinberger and Saul ’04]

MaximizeK tr(K)

Constraints:

Can be solved by any SDP solver

Maximize the spread of points



Maximum Variance Unfolding (MVU)



Maximum Variance Unfolding (MVU)



Stochastic Neighbor Embedding (SNE)

Goal: Find a low-dim. map that preserves the “local geometry”
local geometry = similarity between points in local neighborhoods

Idea:
Model the neighborhood structure/information as a probability 
distribution, then find a low-dimensional mapping that matches the same 
distribution!

Notation:    
• x1,…,xn given high dim. data (given)
• y1,…,yn mapped low dim. Representation (to be learned)
• pj|i = probability of xj being the neighbor of xi (computed from data)
• qj|i = probability of yj being the neighbor of yi (to be matched to pj|i) 

Similar goal to LE, BUT a 
drastically different solution!



Stochastic Neighbor Embedding

Stochastic Neighbor Embedding approach:

Key optimization: Maximize the similarity between the distributions

minimizey

Highly non-convex, just do gradient descent 
and settle with the local optimal solution

Meta parameter controlling 
the neighborhood sizeProbability 

model for high-
dim input data

Probability model 
for low-dim 
mapped data

y’s are the variables 
that need to be learned

[Hinton and Roweis ’03]



Stochastic Neighbor Embedding

The individual class clusters 
are well all together producing 

an effective visualization

But the clusters are 
NOT well separated

The issue: “crowding problem”



t-distributed Stochastic Neighbor Embedding

The crowding problem:

Consider three clusters/points A, B, C

High dimensional data is being cramped into a low dimensional 
space, to match the probabilities, the clusters can “crowd” together

Organization in high 
dimensions 

Organization in low 
dimensions 

Because of the gaussian-type neighborhood structure in low 
dimensions, large distance between A and C will be penalized a lot 

causing them to be mapped close (ie crowd) to each other



t-distributed Stochastic Neighbor Embedding

Solution to the crowding problem
Idea: instead of using a thin-tailed Gaussian in the lower dimensions, we can 
use a heavier-tailed distribution, e.g. student’s t-distribution!

Final optimization:

minimizey

Symmetrize the high dimensional 
neighborhood distribution

Use the heavier tailed 
student’s t-distribution

[Van der Maaten and Hinton ’08]



t-SNE

PCA LLE

Sammon mapping t-SNE



t-SNE



t-SNE

PCA LLE

Sammon mapping t-SNE



t-SNE thoughts

• Remarkably effective in visualizing cluster structure in data

• Arguably the best ultra low-dimensional technique that “just works”!
A few contenders are popping up (eg. UMAP)

[McInnes, Healy and Melville ’18]

• Tends to cluster even when there may not be any clusters!
Can result in false cluster discovery

[Im, Verma and Branson ’18]

• Recent results have quantified the sufficient conditions needed for t-SNE 
to be provably successful in revealing the cluster structure in data.

[Lindermann and Steinerberger’17, Arora et al. ’18]



Auto-Encoders

Can we use Neural Networks to do (non-linear) dimension reduction?

Neural Networks

Weight learning is usually 
done by back-propagating 
the error signal (generated 

by the output label)  

Original 
representation

Each hidden layer changes 
the data representation

Prediction via a simple 
softmax on the data 

representation according 
to the last hidden layer



Auto-Encoders
Hidden Layers

Initial hidden layers

Intermediate 
hidden layers

Final/deep hidden layers
(the representation 
used for prediction)



Auto-Encoders

Idea: To re-represent input data in lower dimensions, we can have the 
hidden layers of a NN with a narrow width

There are no labels, so…
• what should be the output?
• how can we learn the weights? 

Idea:
Since the internal representation is 
supposed to represent the input, we 
should be able to retrieve/produce the 
input from the internal representation!



Auto-Encoders

Idea: To re-represent input data in lower dimensions, we can have the 
hidden layers of a NN with a narrow width



Auto-Encoders

The parameters are learned by backpropagating the error in input reconstruction



Auto-Encoders

Types of Auto-Encoders

• The specific type we saw is called undercomplete auto-encoder 
(hidden layer is of lower dimension than the input layer)

• Overcomplete auto-encoder 
(hidden layer is of higher dimension; it must be regularized)
can be used for sparse representations

• Denoising auto-encoders (DAE)
input is deliberately made noisy and the output is required to be a 
clean representation

• Variational Auto-Encoders (VAE)
A generative model which can help generate new example 
datapoints



VAE Potential



Provable results in Manifold Learning

Let’s fix a desirable property: preserving geodesic distances.

We are interested in the following question:

Given:  a sample X from n-dimensional manifold                    , and

an embedding procedure

Define: the quality of embedding as              -isometric, if for all   

Questions: 

I. Can one come up an      that achieves             -isometry?

II. How much can one reduce d and still have              -isometry?

III. Do we need any restriction on X or M? 



RP on Manifolds

An interesting result:

Let                     be a n-dimensional manifold with volume V and curvature  .  

Then projecting it to a random linear subspace of dimension

achieves               -isometry with high probability. 

Highly undesirable! 

To have all distances within factor of 99% 

requires projection dimension > 10,000!

Does not need any samples from the underlying manifold!



A Result via Nash Embeddings

For any compact n-dimensional manifold ,

we present an algorithm that can embed M in

dimensions that achieves               -isometry (using only samples from M).  

Embedding dimension is independent of     !

Sample size is a function of 



Nash Embedding: The Algorithm

Embedding Stage: Find a representation of M in lower dimensional space 
without worrying about maintaining any distances.

Correction Stage: Apply a series of corrections, each corresponding to a 
different region of the manifold, to restore back the distances. 

We can use a random linear projection without         penalty

This requires a bit of thinking…



Corrections

Say, this is the manifold

after the embedding stage

different regions

are contracted by

different amounts

Zoomed in a local region



Corrections

Zoomed in a local region

cannot systematically attach 

the boundary of the stretched 

region back to the manifold…

Suppose we linearly stretch this local region



Corrections

Zoomed in a local region

Instead we locally twist the space!

This creates the necessary stretch to restore back the local distances!



Technical hurdles to look-out for 

• Care needs to be taken so as not to have sharp (non-

differentiable) edges on the boundary while locally twisting the 

space.

• Sufficient ambient space needs to available to create the local 

twist.

• Interference between different corrections at overlapping 

localities need to be reconciled. 



The algorithm at work



Theoretical guarantee

Theorem:

Let be compact n-dimensional manifold with volume V and 
curvature  . For any     > 0, let X be                -dense sample from M. 

Then with high probability, our algorithm (given access to X) embeds any point 
from M in dimension

with              -isometry.



A quick proof overview

The goal is to prove that the geodesic distances between all pairs of points p
and q in M are approximately preserved. 

Recall that length of any curve  is given by the expression:

Therefore, suffices to show that our algorithm preserves lengths of all vectors 
tangent to at all points in M.

length of a curve is the infinitesimal sum of the 
length of the tangent vectors along its path



A quick proof overview
From differential geometry, we know that for any smooth map F

the exterior derivative or the pushforward map DF acts on the tangent 
vectors.

We carefully analyze how each correction step of the algorithm changes the 
corresponding pushforward map.



Implications

• Gave the first sample complexity result for approximately isometric 
embedding for a manifold learning algorithms.

• Novel algorithmic and analysis techniques are of independent interest.

• One can use an existing manifold learning algorithm as the ‘embedding’ 
step. The corrections in second step enhance the embedding to make it 
isometric, making this as a universal procedure.


