COMS 4995 Lecture 5: Convolutional Neural Networks & Image Classification, Part II

Richard Zemel

Richard Zemel

COMS 4995 Lecture 5: Convolutional Neural

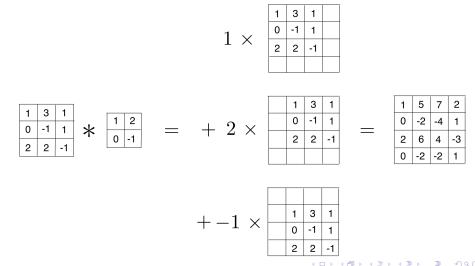
2-D convolution is defined analogously to 1-D convolution.

If A and B are two 2-D arrays, then:

$$(A * B)_{ij} = \sum_{s} \sum_{t} A_{st} B_{i-s,j-t}.$$

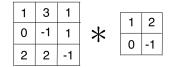
3

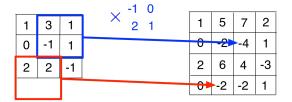
Method 1: Translate-and-Scale



COMS 4995 Lecture 5: Convolutional Neural

Method 2: Flip-and-Filter





3

イロト イポト イヨト イヨト

The thing we convolve by is called a kernel, or filter.

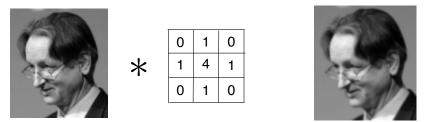
What does this convolution kernel do?

*

(人間) トイヨト イヨト

The thing we convolve by is called a kernel, or filter.

What does this convolution kernel do?



Answer: Blur Note: We call the resulting image an "activation map" by the kernel

What does this convolution kernel do?

*

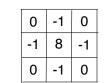
3

<ロ> (日) (日) (日) (日) (日)

What does this convolution kernel do?

*

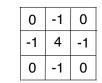
Answer: Sharpen



イロト イポト イヨト イヨト

What does this convolution kernel do?

*



э

イロト イポト イヨト イヨト

What does this convolution kernel do?

*

(日) (周) (三) (三)

Answer: Edge Detection

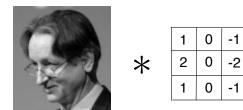
What does this convolution kernel do?

*

3

イロト イポト イヨト イヨト

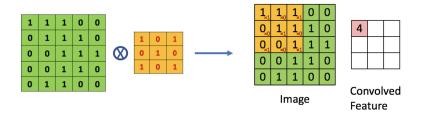
What does this convolution kernel do?



イロト イポト イヨト イヨト

Answer: Stronger Edge Detection

Example: A closer look at convolution



Input: 5 x 5

Output: 3x 3

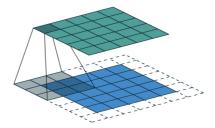
Kernel: 3 x 3

3 = (5 - 3) + 1

イロト イポト イヨト イヨト

3

Example: A closer look at convolution with padding



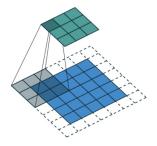
 Input: 5×5 Output: 5×5

 Kernel: 3×3 5 = (5 - 3 + 2 * 1) + 1

 Padding: 1
 (1 + 3) + (2 + 3) + 1

COMS 4995 Lecture 5: Convolutional Neural

Example: A closer look at convolution with stride

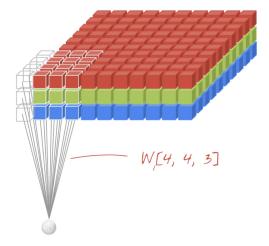


Input: 5 x 5 Kernel: 3 x 3 Padding: 1 Stride = 2

Output: 3 x 3

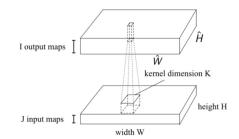
3 = (5 - 3 + 2 * 1)/2 + 1

Example: A closer look at convolution with high dimensional inputs



COMS 4995 Lecture 5: Convolutional Neural

Summary of Convolution Layer



- Input: An array of size $W \times H \times J$
- Hyper-parameters:
 - Number of filters: M
 - Size of filters: K
 - the stride: S
 - Number of zero-padding: P

• Output: Feature maps of size $\hat{W} \times \hat{H} \times I$

•
$$\hat{W} = (W - K + 2P)/S + 1$$

• $\hat{H} = (H - K + 2P)/S + 1$

A D A D A D A

• I = M

- Ways to measure the size of a network:
 - Number of units. This is important because

イロト 不得下 イヨト イヨト

- Ways to measure the size of a network:
 - **Number of units.** This is important because the activations need to be stored in memory during training (i.e. backprop).

イロト 不得下 イヨト イヨト

- Ways to measure the size of a network:
 - **Number of units.** This is important because the activations need to be stored in memory during training (i.e. backprop).
 - Number of weights. This is important because

- 4 週 ト - 4 三 ト - 4 三 ト

- Ways to measure the size of a network:
 - **Number of units.** This is important because the activations need to be stored in memory during training (i.e. backprop).
 - **Number of weights.** This is important because the weights need to be stored in memory, and because the number of parameters determines the amount of overfitting.

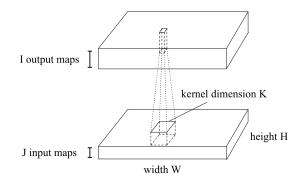
< 回 ト < 三 ト < 三 ト

- Ways to measure the size of a network:
 - **Number of units.** This is important because the activations need to be stored in memory during training (i.e. backprop).
 - **Number of weights.** This is important because the weights need to be stored in memory, and because the number of parameters determines the amount of overfitting.
 - Number of connections. This is important because

- Ways to measure the size of a network:
 - **Number of units.** This is important because the activations need to be stored in memory during training (i.e. backprop).
 - **Number of weights.** This is important because the weights need to be stored in memory, and because the number of parameters determines the amount of overfitting.
 - Number of connections. This is important because there are approximately 3 add-multiply operations per connection (1 for the forward pass, 2 for the backward pass).

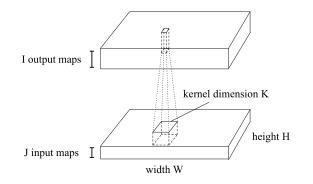
くほと くほと くほと

- Ways to measure the size of a network:
 - **Number of units.** This is important because the activations need to be stored in memory during training (i.e. backprop).
 - **Number of weights.** This is important because the weights need to be stored in memory, and because the number of parameters determines the amount of overfitting.
 - Number of connections. This is important because there are approximately 3 add-multiply operations per connection (1 for the forward pass, 2 for the backward pass).
- We saw that a fully connected layer with *M* input units and *N* output units has *MN* connections and *MN* weights.
- The story for conv nets is more complicated.



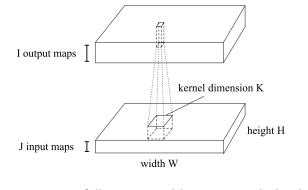
э

イロト イポト イヨト イヨト



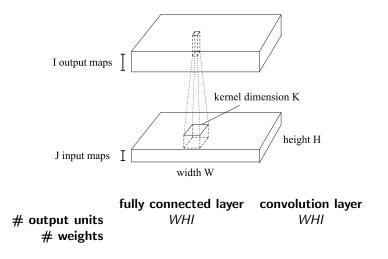
fully connected layer $% \left({{\mathbf{F}_{{\mathbf{F}}}} \right)$ convolution layer # output units

3

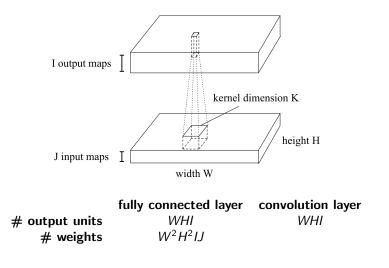


fully connected layerconvolution layer# output unitsWHIWHI

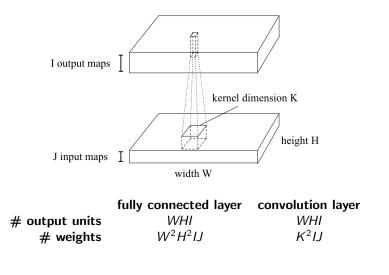
3



3

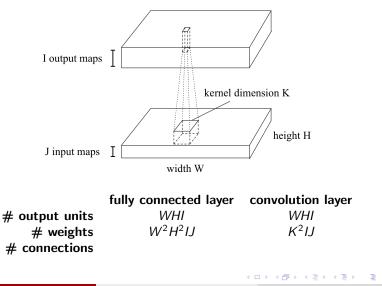


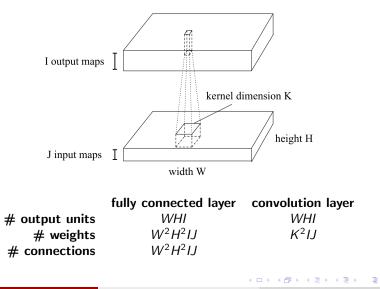
3

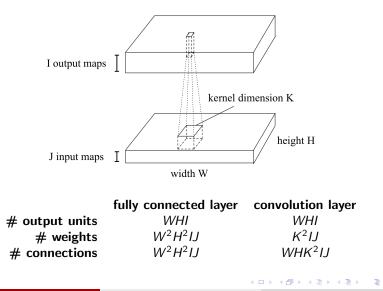


э

(人間) トイヨト イヨト







Pooling layers

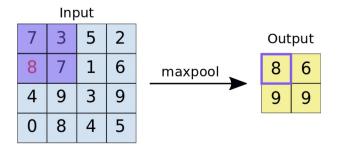
The other type of layer in a pooling layer. These layers reduce the size of the representation and build in invariance to small transformations.

Most commonly, we use max-pooling, which computes the maximum value of the units in a pooling group:

$$y_i = \max_{j \text{ in pooling group}} z_j$$

・ロト ・聞ト ・ヨト ・ヨト

Pooling layer



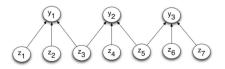
Input: 4 x 4 Kernel: 2 x 2 Stride: 2

Output: 2 x 2

$$2 = (4 - 2) / 2 + 1$$

3

Summary: Pooling layer



- Input: An array of size $W \times H \times J$
- Hyper-parameters:
 - Size of filters: K
 - the stride: S

• Output: Feature maps of size $\hat{W} \times \hat{H} \times I$

•
$$\hat{W} = (W - K)/S + 1$$

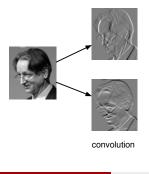
•
$$H = (H - K)/S + 1$$

• $I = J$

< 回 ト < 三 ト < 三 ト

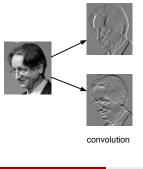
Let's finally turn to convolutional networks. These have two kinds of layers: detection layers (or convolution layers), and pooling layers.

The convolution layer has a set of filters. Its output is a set of feature maps, each one obtained by convolving the image with a filter.



Let's finally turn to convolutional networks. These have two kinds of layers: detection layers (or convolution layers), and pooling layers.

The convolution layer has a set of filters. Its output is a set of feature maps, each one obtained by convolving the image with a filter.

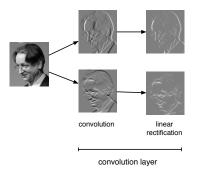


Example first-layer filters

(Zeiler and Fergus, 2013, Visualizing and understanding

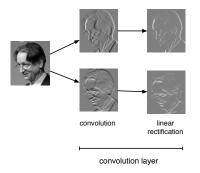
convolutional networks)

It's common to apply a linear rectification nonlinearity: $y_i = \max(z_i, 0)$



Why might we do this?

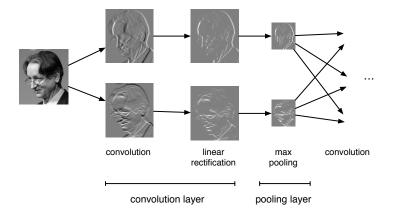
It's common to apply a linear rectification nonlinearity: $y_i = \max(z_i, 0)$



Why might we do this?

- Convolution is a linear operation. Therefore, we need a nonlinearity, otherwise 2 convolution layers would be no more powerful than 1.
- Two edges in opposite directions shouldn't cancel

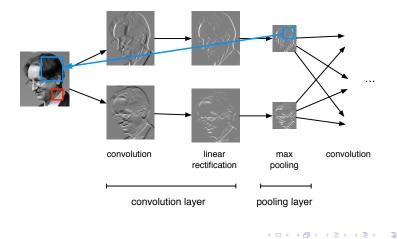
< 回 > < 三 > < 三 >



э

イロト イポト イヨト イヨト

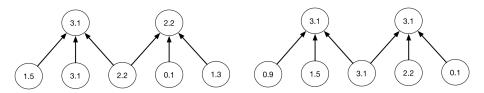
Because of pooling, higher-layer filters can cover a larger region of the input than equal-sized filters in the lower layers.



Equivariance and Invariance

We said the network's responses should be robust to translations of the input. But this can mean two different things.

- Convolution layers are equivariant: if you translate the inputs, the outputs are translated by the same amount.
- We'd like the network's predictions to be invariant: if you translate the inputs, the prediction should not change.
- Pooling layers provide invariance to small translations.



→ < Ξ > <</p>

Each layer consists of several feature maps, or channels each of which is an array.

If the input layer represents a grayscale image, it consists of one channel. If it represents a color image, it consists of three channels.
 Each unit is connected to each unit within its receptive field in the previous layer. This includes *all* of the previous layer's feature maps.

• • = • • = •

Convolution Layers

For simplicity, focus on 1-D signals (e.g. audio waveforms). Suppose the convolution layer's input has J feature maps and its output has I feature maps. Let t index the locations. Suppose the convolution kernels have radius R, i.e. dimension K = 2R + 1.

Each unit in a convolution layer receives inputs from all the units in its receptive field in the previous layer:

$$u_{i,t} = \sum_{j=1}^J \sum_{\tau=-R}^R w_{i,j,\tau j,t+\tau}.$$

In terms of convolution,

$$_{i}=\sum_{j}{}_{j}*\operatorname{flip}(_{i,j}).$$

Object recognition

- Object recognition is the task of identifying which object category is present in an image.
- It's challenging because objects can differ widely in position, size, shape, appearance, etc., and we have to deal with occlusions, lighting changes, etc.
- Why we care about it
 - Direct applications to image search
 - Closely related to object detection, the task of locating all instances of an object in an image
 - E.g., a self-driving car detecting pedestrians or stop signs
- For the past decade, all of the best object recognizers have been various kinds of conv nets.

- 4 週 ト - 4 三 ト - 4 三 ト

- In order to train and evaluate a machine learning system, we need to collect a dataset. The design of the dataset can have major implications.
- Some questions to consider:
 - Which categories to include?
 - Where should the images come from?
 - How many images to collect?
 - How to normalize (preprocess) the images?

• • = • • = •

Image Classification

- Conv nets are just one of many possible approaches to image classification. However, they have been by far the most successful for the last decade.
- Biggest image classification "advances" of the last two decades
 - Datasets have gotten much larger (because of digital cameras and the Internet)
 - Computers got much faster
 - Graphics processing units (GPUs) turned out to be really good at training big neural nets; they're generally about 30 times faster than CPUs.
 - As a result, we could fit bigger and bigger neural nets.

- 4 目 ト - 4 日 ト - 4 日 ト

MNIST Dataset

- MNIST dataset of handwritten digits
 - Categories: 10 digit classes
 - Source: Scans of handwritten zip codes from envelopes
 - Size: 60,000 training images and 10,000 test images, grayscale, of size 28×28
 - Normalization: centered within in the image, scaled to a consistent size
 - The assumption is that the digit recognizer would be part of a larger pipeline that segments and normalizes images.
- In 1998, Yann LeCun and colleagues built a conv net called LeNet which was able to classify digits with 98.9% test accuracy.
 - It was good enough to be used in a system for automatically reading numbers on checks.

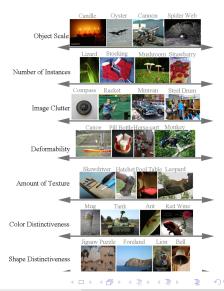
- 4 目 ト - 4 日 ト - 4 日 ト

ImageNet is the modern object recognition benchmark dataset. It was introduced in 2009, and has led to amazing progress in object recognition since then.

COMS 4995 Lecture 5: Convolutional Neural

- Used for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), an annual benchmark competition for object recognition algorithms
- Design decisions
 - Categories: Taken from a lexical database called WordNet
 - WordNet consists of "synsets", or sets of synonymous words
 - They tried to use as many of these as possible; almost 22,000 as of 2010
 - Of these, they chose the 1000 most common for the ILSVRC
 - The categories are really specific, e.g. hundreds of kinds of dogs
 - Size: 1.2 million full-sized images for the ILSVRC
 - **Source:** Results from image search engines, hand-labeled by Mechanical Turkers
 - Labeling such specific categories was challenging; annotators had to be given the WordNet hierarchy, Wikipedia, etc.
 - Normalization: none, although the contestants are free to do preprocessing

Images and object categories vary on a lot of dimensions



Russakovsky et al.

COMS 4995 Lecture 5: Convolutional Neural

Size on disk:

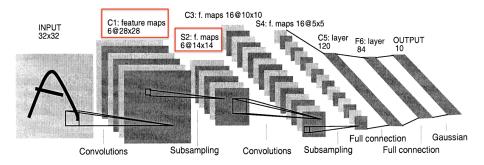
MNIST 60 MB

<ロ> (日) (日) (日) (日) (日)

COMS 4995 Lecture 5: Convolutional Neural

æ

Here's the LeNet architecture, which was applied to handwritten digit recognition on MNIST in 1998:



3

Size of a Conv Net: LeNet

Sizes of layers in LeNet:

Layer	Туре	# units	# connections	# weights
C1	convolution	4704	117,600	150
S2	pooling	1176	4704	0
C3	convolution	1600	240,000	2400
S4	pooling	400	1600	0
F5	fully connected	120	48,000	48,000
F6	fully connected	84	10,080	10,080
output	fully connected	10	840	840

Conclusions?

3

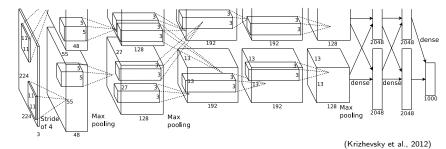
イロト イポト イヨト イヨト

Size of a Conv Net

- Rules of thumb:
 - Most of the units and connections are in the convolution layers.
 - Most of the weights are in the fully connected layers.
- If you try to make layers larger, you'll run up against various resource limitations (i.e. computation time, memory)
- Conv nets have gotten a LOT larger since 1998!

AlexNet

• AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network gets 5 tries to guess the right category).



- They used lots of tricks we've covered in this course (ReLU units, weight decay, data augmentation, SGD with momentum, dropout)
- AlexNet's stunning performance on the ILSVRC is what set off the deep learning boom of the last 6 years.

- 4 @ > 4 @ > 4 @ >

Richard Zemel

Size of a Conv Net: Comparison

	LeNet (1989)	LeNet (1998)	AlexNet (2012)
classification task	digits	digits	objects
categories	10	10	1,000
image size	16 imes 16	28 imes 28	$256\times256\times3$
training examples	7,291	60,000	1.2 million
units	1,256	8,084	658,000
parameters	9,760	60,000	60 million
connections	65,000	344,000	652 million

æ

<ロ> (日) (日) (日) (日) (日)

GoogLeNet

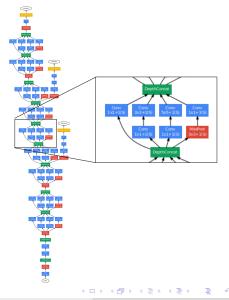
GoogLeNet, 2014.

22 weight layers

Fully convolutional (no fully connected layers)

Convolutions are broken down into a bunch of smaller convolutions

6.6% test error on ImageNet



GoogLeNet

- They were really aggressive about cutting the number of parameters.
 - Motivation: train the network on a large cluster, run it on a cell phone
 - Memory at test time is the big constraint.
 - Having lots of units is OK, since the activations only need to be stored at training time (for backpropagation).
 - Parameters need to be stored both at training and test time, so these are the memory bottleneck.
 - How they did it
 - No fully connected layers (remember, these have most of the weights)
 - Break down convolutions into multiple smaller convolutions (since this requires fewer parameters total)
 - GoogLeNet has "only" 2 million parameters, compared with 60 million for AlexNet
 - This turned out to improve generalization as well. (Overfitting can still be a problem, even with over a million images!)

・ロト ・ 一 ・ ・ ヨト ・ ヨト

Classification

ImageNet results over the years. Note that errors are top-5 errors (the network gets to make 5 guesses).

Year	Model	Top-5 error
2010	Hand-designed descriptors $+$ SVM	28.2%
2011	Compressed Fisher Vectors $+$ SVM	25.8%
2012	AlexNet	16.4%
2013	a variant of AlexNet	11.7%
2014	GoogLeNet	6.6%
2015	deep residual nets	4.5%

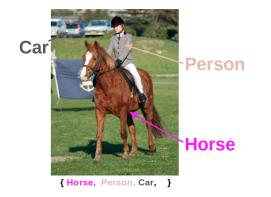
We'll cover deep residual nets later in the course, since they require an idea we haven't covered yet.

Human-performance is around 5.1%.

They stopped running the object recognition competition because the performance is already so good.

Beyond Classification

- The classification nets map the entire input image to a pre-defined class categories.
- But there are more than just class labels in an image.
 - where is the foreground object? how many? what is in the background?

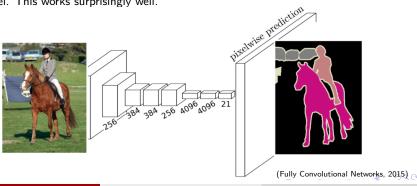


(PASCAL VOC 2012)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Semantic Segmentation

- Semantic segmentation, a natural extention of classification, focuses on making dense classification of class labels for every pixel.
- It is an important step towards complete scene understanding in compter vision.
 - Semantic segmentation is a stepping stone for many of the high-level vision tasks, such as object detection, Visual Question Answering (VQA).
- A naive approach is to adapt the existing object classification conv nets for each pixel. This works surprisingly well.



Semantic Segmentation

- After the success of CNN classifiers, segmentation models quickly moved away from hand-craft features and pipelines but instead use CNN as the main structure.
- Pre-trained ImageNet classification network serves as a building block for all the state-of-the-art CNN-based segmentation models.

2013

2015

2018

- 4 同 ト - 4 三 ト - 4 三

ground truth

from left to wright (Li, et. al., (CSI), CVPR, 2013; Long, et. al., (FCN), CVPR 2015; Chen et. al., (DeepLab), PAMI 2018)