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Overview

We’ve focused so far on how to optimize neural nets — how to get
them to make good predictions on the training set.

How do we make sure they generalize to data they haven’t seen
before?

Even though the topic is well studied, it’s still poorly understood.
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Generalization

Recall: overfitting and underfitting
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We’d like to minimize the generalization error, i.e. error on novel examples.
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Generalization

Training and test error as a function of # training examples and #
parameters:
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Our Bag of Tricks

How can we train a model that’s complex enough to model the
structure in the data, but prevent it from overfitting? I.e., how to
achieve low bias and low variance?

Our bag of tricks

data augmentation
reduce the number of paramters
weight decay
early stopping
ensembles (combine predictions of different models)
stochastic regularization (e.g. dropout)

The best-performing models on most benchmarks use some or all of
these tricks.
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Data Augmentation

The best way to improve generalization is to collect more data!

Suppose we already have all the data we’re willing to collect. We can
augment the training data by transforming the examples. This is
called data augmentation.

Examples (for visual recognition)

translation
horizontal or vertical flip
rotation
smooth warping
noise (e.g. flip random pixels)

Only warp the training, not the test, examples.

The choice of transformations depends on the task. (E.g. horizontal
flip for object recognition, but not handwritten digit recognition.)
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Reducing the Number of Parameters

Can reduce the number of layers or the number of paramters per layer.

Adding a linear bottleneck layer is another way to reduce the number of
parameters:

The first network is strictly more expressive than the second (i.e. it can
represent a strictly larger class of functions). (Why?)

Remember how linear layers don’t make a network more expressive? They
might still improve generalization.
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Weight Decay

We’ve already seen that we can regularize a network by penalizing
large weight values, thereby encouraging the weights to be small in
magnitude.

Jreg = J + λR = J +
λ

2

∑
j

w2
j

We saw that the gradient descent update can be interpreted as
weight decay:

w← w − α
(
∂J
∂w

+ λ
∂R
∂w

)
= w − α

(
∂J
∂w

+ λw

)
= (1− αλ)w − α∂J

∂w
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Weight Decay

Why we want weights to be small:

y = 0.1x5 + 0.2x4 + 0.75x3 − x2 − 2x + 2

y = −7.2x5 + 10.4x4 + 24.5x3 − 37.9x2 − 3.6x + 12

The red polynomial overfits. Notice it has really large coefficients.
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Weight Decay

Why we want weights to be small:

Suppose inputs x1 and x2 are nearly identical. The following two
networks make nearly the same predictions:

But the second network might make weird predictions if the test
distribution is slightly different (e.g. x1 and x2 match less closely).
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Weight Decay

The geometric picture:
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Weight Decay

There are other kinds of regularizers which encourage weights to be small,
e.g. sum of the absolute values.

These alternative penalties are commonly used in other areas of machine learning,
but less commonly for neural nets.

Regularizers differ by how strongly they prioritize making weights exactly zero,
vs. not being very large.

— Hinton, Coursera lectures — Bishop, Pattern Recognition and Machine Learning
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Early Stopping

We don’t always want to find a global (or even local) optimum of our
cost function. It may be advantageous to stop training early.

Early stopping: monitor performance on a validation set, stop training
when the validtion error starts going up.
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Early Stopping

A slight catch: validation error fluctuates because of stochasticity in
the updates.

Determining when the validation error has actually leveled off can be
tricky.
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Early Stopping

Why does early stopping work?

Weights start out small, so it takes time for them to grow large.
Therefore, it has a similar effect to weight decay.
If you are using sigmoidal units, and the weights start out small, then
the inputs to the activation functions take only a small range of values.

Therefore, the network starts out approximately linear, and gradually
becomes more nonlinear (and hence more powerful).
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Ensembles

If a loss function is convex (with respect to the predictions), you have
a bunch of predictions, and you don’t know which one is best, you are
always better off averaging them.

L(λ1y1 + · · ·+ λNyN , t) ≤ λ1L(y1, t) + · · ·+ λNL(yN , t) for λi ≥ 0,
∑
i

λi = 1

This is true no matter where they came from (trained neural net,
random guessing, etc.). Note that only the loss function needs to be
convex, not the optimization problem.

Examples: squared error, cross-entropy, hinge loss

If you have multiple candidate models and don’t know which one is
the best, maybe you should just average their predictions on the test
data. The set of models is called an ensemble.

Averaging often helps even when the loss is nonconvex (e.g. 0–1 loss).
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Ensembles

Some examples of ensembles:

Train networks starting from different random initializations. But this
might not give enough diversity to be useful.
Train networks on differnet subsets of the training data. This is called
bagging.
Train networks with different architectures or hyperparameters, or even
use other algorithms which aren’t neural nets.

Ensembles can improve generalization quite a bit, and the winning
systems for most machine learning benchmarks are ensembles.

But they are expensive, and the predictions can be hard to interpret.
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Stochastic Regularization

For a network to overfit, its computations need to be really precise. This
suggests regularizing them by injecting noise into the computations, a
strategy known as stochastic regularization.

Dropout is a stochastic regularizer which randomly deactivates a subset of
the units (i.e. sets their activations to zero).

hj =

{
φ(zj) with probability 1− ρ
0 with probability ρ,

where ρ is a hyperparameter.

Equivalently,
hj = mj · φ(zj),

where mj is a Bernoulli random variable, independent for each hidden unit.

Backprop rule:
zj = hj ·mj · φ′(zj)
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Stochastic Regularization

Dropout can be seen as training an ensemble of 2D different
architectures with shared weights (where D is the number of units):

— Goodfellow et al., Deep Learning
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Dropout

Dropout at test time:

Most principled thing to do: run the network lots of times
independently with different dropout masks, and average the
predictions.

Individual predictions are stochastic and may have high variance, but
the averaging fixes this.

In practice: don’t do dropout at test time, but multiply the weights
by 1− ρ

Since the weights are on 1− ρ fraction of the time, this matches their
expectation.
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Dropout as an Adaptive Weight Decay

Consider a linear regression, y (i) =
∑

j wjx
(i)
j . The inputs are droped out

half of the time: ỹ (i) = 2
∑

j m
(i)
j wjx

(i)
j ,m ∼ Bern(0.5). Em[ỹ (i)] = y (i).
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1

2N
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The bias-variance decomposition of the squared error gives:
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1
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j x
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2
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Stochastic Regularization

Dropout can help performance quite a bit, even if you’re already using
weight decay.

Lots of other stochastic regularizers have been proposed:

Batch normalization (mentioned last week for its optimization benefits)
also introduces stochasticity, thereby acting as a regularizer.
The stochasticity in SGD updates has been observed to act as a
regularizer, helping generalization.

Increasing the mini-batch size may improve training error at the
expense of test error!
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Our Bag of Tricks

Techniques we just covered:

data augmentation
reduce the number of paramters
weight decay
early stopping
ensembles (combine predictions of different models)
stochastic regularization (e.g. dropout)

The best-performing models on most benchmarks use some or all of
these tricks.
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