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Attention is All You Need (Transformers)

We would like our model to have access to the entire history at the
hidden layers.

Previously we achieved this by having the recurrent connections.

Core idea: use attention to aggregate the context information by
attending to one or a few important inputs from the past history.
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Attention is All You Need

We will now study a very successful
neural network architecture for machine
translation:

Vaswani, Ashish, et al.
”Attention is all you need.”
Advances in Neural
Information Processing
Systems. 2017.

“Transformer” has a encoder-decoder
architecture similar to the previous
sequence-to-sequence RNN models.

except all the recurrent connections
are replaced by attention modules.
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Attention is All You Need

In general, Attention mappings can be
described as a function of a query and a set of
key-value pairs.

Transformers use a ”Scaled Dot-Product
Attention” to obtain the context vector:

c(t) = attention(Q,K ,V ) = softmax

(
QKT

√
dK

)
V ,

scaled by square root of the key dimension dK .

Invalid connections to the future inputs are
masked out to preserve the autoregressive
property.
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Example2: Dot-Product Attention

Assume the keys and the values are the same vectors:
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Example3: Scaled Dot-Product Attention

Scale the un-normalized attention weights by the square root of the vector
length:
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Example4: Different Keys and Values

When the key and the value vectors are different:
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Attention is All You Need

Transformer models attend to both the encoder annotations and its
previous hidden layers.

When attending to the encoder annotations, the model computes the
key-value pairs using linearly transformed encoder outputs.
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Attention is All You Need

Transformer models also use “self-attention” on its previous hidden
layers.

When applying attention to the previous hidden layers, the causal
structure is preserved.
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Attention is All You Need

The Scaled Dot-Product Attention attends to one or few entries in
the input key-value pairs.

Humans can attend to many things simultaneously.

The idea: apply Scaled Dot-Product Attention multiple times on the
linearly transformed inputs.

MultiHead(Q,K ,V ) = concat (c1, · · · , ch)WO ,

ci = attention(QWQ
i ,KWK

i ,VW V
i ).
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Positional Encoding

Unlike RNNs and CNNs encoders, the attention encoder outputs do
not depend on the order of the inputs. (Why?)

The order of the sequence conveys important information for the
machine translation tasks and language modeling.

The idea: add positional information of a input token in the sequence
into the input embedding vectors.

PEpos,2i = sin(pos/100002i/demb),

PEpos,2i+1 = cos(pos/100002i/demb),

The final input embeddings are the concatenation of the learnable
embedding and the postional encoding.
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Transformer Machine Translation

Transformer has a encoder-decoder
architecture similar to the previous
RNN models.

except all the recurrent connections
are replaced by the attention modules.

The transfomer model uses N stacked
self-attention layers.

Skip-connections help preserve the
positional and identity information from
the input sequences.
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Transformer Machine Translation

Self-attention layers learnt ”it“ could refer to different entities in the
different contexts.

Visualization of the 5th to 6th self-attention layer in the encoder.
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
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Transformer Machine Translation

BLEU scores of state-of-the-art models on the WMT14
English-to-German translation task

Vaswani, Ashish, et al. ”Attention is all you need.” Advances in Neural Information Processing Systems. 2017.
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Computational Cost and Parallelism

There are a few things we should consider when designing an RNN.

Computational cost:

Number of connections. How many add-multiply operations for the
forward and backward pass.
Number of time steps. How many copies of hidden units to store for
Backpropgation Through Time.
Number of sequential operations. The computations cannot be
parallelized. (The part of the model that requires a for loop).

Maximum path length across time: the shortest path length
between the first encoder input and the last decoder output.

It tells us how easy it is for the RNN to remember / retreive
information from the input sequence.
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Computational Cost and Parallelism

Consider a standard d layer RNN with k hidden units, training on a
sequence of length t.

There are k2 connections for each hidden-to-hidden connection. A
total of t × k2 × d connections.

We need to store all t × k × d hidden units during training.

Only k × d hidden units need to be stored at test time.
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Computational Cost and Parallelism

Consider a standard d layer RNN from Lecture 7 with k hidden units,
training on a sequence of length t.

Which hidden layers can be computed in parallel in this RNN?

Richard Zemel COMS 4995 Lecture 10: Transformers 17 / 31



Computational Cost and Parallelism

Consider a standard d layer RNN from Lecture 7 with k hidden units,
training on a sequence of length t.

Both the input embeddings and the outputs of an RNN can be
computed in parallel.

The blue hidden units are independent given the red.

The number of sequential operations is still proportional to t.
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Computational Cost and Parallelism

During backprop, in the standard encoder-decoder RNN, the
maximum path length across time is the number of time steps.
Attention-based RNNs have a constant path length between the
encoder inputs and the decoder hidden states.

Learning becomes easier. Why?
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Computational Cost and Parallelism

During a forward pass, attention-based RNNs achieves efficient
content-based addressing at the cost of re-computing context vectors
at each time step.

Bahdanau et. al. computes the context vector over the entire input
sequence of length t using a neural network of k2 connections.
Computing the context vectors adds a t × k2 cost at each time step.
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Computational Cost and Parallelism

In summary:

t: sequence length, d: # layers and k: # neurons at each layer.

training training test test
Model complexity memory complexity memory

RNN t × k2 × d t × k × d t × k2 × d k × d
RNN+attn. t2 × k2 × d t2 × k × d t2 × k2 × d t × k × d

Attention needs to re-compute context vectors at every time step.

Attention has the benefit of reducing the maximum path length
between long range dependencies of the input and the target
sentences.

sequential maximum path
Model operations length across time

RNN t t
RNN+attn. t 1
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Improve Parallelism

RNNs are sequential in the sequence length t due to the number
hidden-to-hidden lateral connections.

RNN architecture limits the parallelism potential for longer sequences.

Improve parallelism: remove the lateral connections. We will have a
deep autoregressive model, where the hidden units depends on all the
previous time steps.

Benefit: the number of sequential operations is now linear in the depth
d , but is independent of the sequence length t. (usually d << t.)
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Computational Cost and Parallelism

Self-attention allows the model to learn to access information from
the past hidden layer, but decoding is very expensive.

When generating sentences, the computation in the self-attention
decoder grows as the sequence gets longer.
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Computational Cost and Parallelism

t: sequence length, d: # layers and k: # neurons at each layer.
training training test test

Model complexity memory complexity memory

RNN t × k2 × d t × k × d t × k2 × d k × d
RNN+attn. t2 × k2 × d t2 × k × d t2 × k2 × d t × k × d
transformer t2 × k × d t × k × d t2 × k × d t × k × d

Transformer vs RNN: There is a trade-off between the sequencial
operations and decoding complexity.

The sequential operations in transformers are independent of sequence
length, but they are very expensive to decode.
Transformers can learn faster than RNNs on parallel processing
hardwards for longer sequences.

sequential maximum path
Model operations length across time

RNN t t
RNN+attn. t 1
transformer d 1
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Transformer Language Pre-training

Similar to pre-training computer vision models on ImageNet, we can
pre-train a language model for NLP tasks.

The pre-trained model is then fine-tuned on textual entailment,
question answering, semantic similarity assessment, and document
classification.

Radford, Alec, et al. ”Improving Language Understanding by Generative Pre-Training.” 2018.
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Transformer Language Pre-training

Increasing the training data set and the model size has a noticible
improvement on the transformer language model. Cherry picked
generated samples from Radford, et al., 2019:

For the full text samples see Radford, Alec, et al. ”Language Models are Unsupervised Multitask Learners.” 2019.
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Neural Turing Machines (optional)

We said earlier that multilayer perceptrons are like differentiable circuits.

Using an attention model, we can build differentiable computers.

We’ve seen hints that sparsity of memory accesses can be useful:

Computers have a huge memory, but they only access a handful of locations
at a time. Can we make neural nets more computer-like?
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Neural Turing Machines (optional)

Recall Turing machines:

You have an infinite tape, and a head, which transitions between various
states, and reads and writes to the tape.

“If in state A and the current symbol is 0, write a 0, transition to state B,
and move right.”

These simple machines are universal — they’re capable of doing any
computation that ordinary computers can.
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Neural Turing Machines (optional)

Neural Turing Machines are an analogue of Turing machines where all of the
computations are differentiable.

This means we can train the parameters by doing backprop through the

entire computation.

Each memory location stores a
vector.

The read and write heads interact
with a weighted average of memory
locations, just as in the attention
models.

The controller is an RNN (in
particular, an LSTM) which can
issue commands to the read/write
heads.

Richard Zemel COMS 4995 Lecture 10: Transformers 29 / 31



Neural Turing Machines (optional)

Repeat copy task: receives a sequence of binary vectors, and has to
output several repetitions of the sequence.

Pattern of memory accesses for the read and write heads:
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Neural Turing Machines (optional)

Priority sort: receives a sequence of (key, value) pairs, and has to
output the values in sorted order by key.

Sequence of memory accesses:
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