
COMS 4995 Lecture 12:
Reversible Models

Richard Zemel

Richard Zemel COMS 4995 Lecture 12: Reversible Models 1 / 17



Overview

In generative modeling, we’d like to train a network that models a
distribution, such as a distribution over images.

We have seen a few approaches to generative modeling:

Autoregressive models
Generative adversarial networks (last lecture)
Reversible architectures (this lecture)
Variational autoencoders (next lecture)

All four approaches have different pros and cons.

Richard Zemel COMS 4995 Lecture 12: Reversible Models 2 / 17



Generator Networks

Start by sampling the code vector z from a fixed, simple distribution
(e.g. spherical Gaussian)

The generator network computes a differentiable function G mapping
z to an x in data space

https://blog.openai.com/generative-models/

Richard Zemel COMS 4995 Lecture 12: Reversible Models 3 / 17

https://blog.openai.com/generative-models/


Generator Networks

We have seen how to learn generator networks by training a
discriminator in GANs.

Problem:

Learning can be very unstable. Need to tune many hyperparameters.
No direct evaluation metric to assess the trained generator networks.

Idea: learn the generator directly via change of variables. (Calculus!)

Richard Zemel COMS 4995 Lecture 12: Reversible Models 4 / 17



Change of Variables Formula

Let f denote a differentiable, bijective mapping from space Z to
space X . (I.e., it must be 1-to-1 and cover all of X .)

Since f defines a one-to-one correspondence between values z ∈ Z
and x ∈ X , we can think of it as a change-of-variables transformation.

Change-of-Variables Formula from probability theory: if x = f (z),
then

pX (x) = pZ (z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1
Intuition for the Jacobian term:

Richard Zemel COMS 4995 Lecture 12: Reversible Models 5 / 17



Change of Variables Formula

Suppose we have a generator network which computes the function f .
It’s tempting to apply the change-of-variables formula in order to
compute the density pX (x).

I.e., compute z = f −1(x)

pX (x) = pZ (z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1
Problems?

It needs to be differentiable, so that the Jacobian ∂x/∂z is defined.
The mapping f needs to be invertible, with an easy-to-compute inverse.
We need to be able to compute the (log) determinant.

Differentiability is easy (just use a differentiable activation function),
but the other requirements are trickier.

Richard Zemel COMS 4995 Lecture 12: Reversible Models 6 / 17



Change of Variables Formula

Suppose we have a generator network which computes the function f .
It’s tempting to apply the change-of-variables formula in order to
compute the density pX (x).

I.e., compute z = f −1(x)

pX (x) = pZ (z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1
Problems?

It needs to be differentiable, so that the Jacobian ∂x/∂z is defined.
The mapping f needs to be invertible, with an easy-to-compute inverse.
We need to be able to compute the (log) determinant.

Differentiability is easy (just use a differentiable activation function),
but the other requirements are trickier.

Richard Zemel COMS 4995 Lecture 12: Reversible Models 6 / 17



Reversible Blocks

Now let’s define a reversible block which is invertible and has a
tractable determinant.

Such blocks can be composed.

Inversion: f −1 = f −1
1 ◦ · · · ◦ f −1

k

Determinants:
∣∣∂xk
∂z

∣∣ =
∣∣ ∂xk
∂xk−1

∣∣ · · · ∣∣∂x2∂x1

∣∣∣∣∂x1
∂z

∣∣

Richard Zemel COMS 4995 Lecture 12: Reversible Models 7 / 17



Reversible Blocks

Recall the residual blocks:

y = x + F(x)

Reversible blocks are a variant of
residual blocks. Divide the units into
two groups, x1 and x2.

y1 = x1 + F(x2)

y2 = x2

Inverting a reversible block:

x2 = y2

x1 = y1 −F(x2)

Richard Zemel COMS 4995 Lecture 12: Reversible Models 8 / 17



Reversible Blocks

Composition of two reversible blocks, but with x1 and x2 swapped:

Forward:

y1 = x1 + F(x2)

y2 = x2 + G(y1)

Backward:

x2 = y2 − G(y1)

x1 = y1 −F(x2)

Richard Zemel COMS 4995 Lecture 12: Reversible Models 9 / 17



Volume Preservation

It remains to compute the log determinant of the Jacobian.

The Jacobian of the reversible block:

y1 = x1 + F(x2)

y2 = x2

∂y

∂x
=

(
I ∂F

∂x2
0 I

)
This is an upper triangular matrix. The determinant of an upper
triangular matrix is the product of the diagonal entries, or in this
case, 1.

Since the determinant is 1, the mapping is said to be volume
preserving.

Richard Zemel COMS 4995 Lecture 12: Reversible Models 10 / 17



Nonlinear Independent Components Estimation

We’ve just defined the reversible block.
Easy to invert by subtracting rather than adding the residual function.
The determinant of the Jacobian is 1.

Nonlinear Independent Components Estimation (NICE) trains a
generator network which is a composition of lots of reversible blocks.

We can compute the likelihood function using the change-of-variables
formula:

pX (x) = pZ (z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1 = pZ (z)

We can train this model using maximum likelihood. I.e., given a
dataset {x(1), . . . , x(N)}, we maximize the likelihood

N∏
i=1

pX (x(i)) =
N∏
i=1

pZ (f −1(x(i)))

Richard Zemel COMS 4995 Lecture 12: Reversible Models 11 / 17



Nonlinear Independent Components Estimation

Likelihood:
pX (x) = pZ (z) = pZ (f −1(x))

Remember, pZ is a simple, fixed distribution (e.g. independent
Gaussians)

Intuition: train the network such that f −1 maps each data point to a
high-density region of the code vector space Z.

Without constraints on f , it could map everything to 0, and this
likelihood objective would make no sense.
But it can’t do this because it’s volume preserving.

Richard Zemel COMS 4995 Lecture 12: Reversible Models 12 / 17



Nonlinear Independent Components Estimation

Dinh et al., 2016. Density estimation using RealNVP.

Richard Zemel COMS 4995 Lecture 12: Reversible Models 13 / 17



Nonlinear Independent Components Estimation

Samples produced by RealNVP, a model based on NICE.

Dinh et al., 2016. Density estimation using RealNVP.

Richard Zemel COMS 4995 Lecture 12: Reversible Models 14 / 17



RevNets (optional)

A side benefit of reversible blocks: you don’t need to store the
activations in memory to do backprop, since you can reverse the
computation.

I.e., compute the activations as you need them, moving backwards
through the computation graph.

Notice that reversible blocks look a lot like residual blocks.

Can use this to design a reversible residual network (RevNet)
architecture which is like a ResNet, but with reversible blocks instead
of residual blocks.

Matches state-of-the-art performance on ImageNet, but without the
memory cost of activations!
Gomez et al., NIPS 2017. “The reversible residual network: backprop
without storing activations”.

Richard Zemel COMS 4995 Lecture 12: Reversible Models 15 / 17


