
COMS 4995 Lecture 14:
Reinforcement Learning

Richard Zemel

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 1 / 29

Reparameterization Trick

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 2 / 29

Reparameterization Trick

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 3 / 29

VAE Summary

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 4 / 29

Trade-offs of Generative Approaches

So far, we have seen four different approaches:

Autoregressive models
Generative adversarial networks
Reversible architectures
Variational autoencoders

They all have their own pros and cons. We often pick a method based
on our application needs.

Some considerations for computer vision applications:

Do we aim to evaluate log likelihood of new data?
Do we prefer good samples over an evaluation metric?
How important is representation learning, i.e., meaningful code vectors?
How much computational resource can we spend?

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 5 / 29

Trade-offs of Generative Approaches

In summary:

Log-likelihood Sample Representation Computation

Autoregressive Tractable Good Poor O(#pixels)
GANs Intractable Good Good O(#layers)

Reversible Tractable Poor Poor O(#layers)
VAEs (optional) Tractable* OK Good O(#layers)

There is no silver bullet in generative modeling.

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 6 / 29

Overview

Most of this course has been about supervised learning, plus a little
unsupervised learning.

Reinforcement learning:

Middle ground between supervised and unsupervised learning
An agent acts in an environment and receives a reward signal.

Today: policy gradient (directly do SGD over a stochastic policy
using trial-and-error)

Next lecture: combine policies and Q-learning

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 7 / 29

Reinforcement learning

An agent interacts with an environment (e.g. game of Breakout)
In each time step t,

the agent receives observations (e.g. pixels) which give it information
about the state st (e.g. positions of the ball and paddle)
the agent picks an action at (e.g. keystrokes) which affects the state

The agent periodically receives a reward r(st , at), which depends on
the state and action (e.g. points)
The agent wants to learn a policy πθ(at | st)

Distribution over actions depending on the current state and
parameters θ

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 8 / 29

Reinforcement learning

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 9 / 29

Reinforcement learning

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 10 / 29

Reinforcement learning

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 11 / 29

Markov Decision Processes

The environment is represented as a Markov decision process M.

Markov assumption: all relevant information is encapsulated in the
current state; i.e. the policy, reward, and transitions are all
independent of past states given the current state

Components of an MDP:

initial state distribution p(s0)
policy πθ(at | st)
transition distribution p(st+1 | st , at)
reward function r(st , at)

Assume a fully observable environment, i.e. st can be observed directly

Rollout, or trajectory τ = (s0, a0, s1, a1, . . . , sT , aT)

Probability of a rollout

p(τ) = p(s0)πθ(a0 | s0) p(s1 | s0, a0) · · · p(sT | sT−1, aT−1)πθ(aT | sT)

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 12 / 29

Markov Decision Processes

Continuous control in simulation, e.g. teaching an ant to walk

State: positions, angles, and velocities of the joints

Actions: apply forces to the joints

Reward: distance from starting point

Policy: output of an ordinary MLP, using the state as input

More environments: https://gym.openai.com/envs/#mujoco

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 13 / 29

https://gym.openai.com/envs/#mujoco

Markov Decision Processes

Return for a rollout: r(τ) =
∑T

t=0 r(st , at)
Note: we’re considering a finite horizon T , or number of time steps;
we’ll consider the infinite horizon case later.

Goal: maximize the expected return, R = Ep(τ)[r(τ)]

The expectation is over both the environment’s dynamics and the
policy, but we only have control over the policy.
The stochastic policy is important, since it makes R a continuous
function of the policy parameters.

Reward functions are often discontinuous, as are the dynamics
(e.g. collisions)

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 14 / 29

REINFORCE

REINFORCE is an elegant algorithm for maximizing the expected
return R = Ep(τ) [r(τ)].

Intuition: trial and error

Sample a rollout τ . If you get a high reward, try to make it more likely.
If you get a low reward, try to make it less likely.

Interestingly, this can be seen as stochastic gradient ascent on R.

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 15 / 29

REINFORCE

Recall the derivative formula for log:

∂

∂θ
log p(τ) =

∂
∂θp(τ)

p(τ)
=⇒ ∂

∂θ
p(τ) = p(τ)

∂

∂θ
log p(τ)

Gradient of the expected return:

∂

∂θ
Ep(τ) [r(τ)] =

∂

∂θ

∑
τ

r(τ)p(τ)

=
∑
τ

r(τ)
∂

∂θ
p(τ)

=
∑
τ

r(τ)p(τ)
∂

∂θ
log p(τ)

= Ep(τ)

[
r(τ)

∂

∂θ
log p(τ)

]
Compute stochastic estimates of this expectation by sampling rollouts.

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 16 / 29

REINFORCE

For reference:
∂

∂θ
Ep(τ) [r(τ)] = Ep(τ)

[
r(τ)

∂

∂θ
log p(τ)

]
If you get a large reward, make the rollout more likely. If you get a
small reward, make it less likely.
Unpacking the REINFORCE gradient:

∂

∂θ
log p(τ) =

∂

∂θ
log

[
p(s0)

T∏
t=0

πθ(at | st)
T∏
t=1

p(st | st−1, at−1)

]

=
∂

∂θ
log

T∏
t=0

πθ(at | st)

=
T∑
t=0

∂

∂θ
log πθ(at | st)

Hence, it tries to make all the actions more likely or less likely,
depending on the reward. I.e., it doesn’t do credit assignment.

This is a topic for next lecture.
Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 17 / 29

REINFORCE

Repeat forever:

Sample a rollout τ = (s0, a0, s1, a1, . . . , sT , aT)

r(τ)←
∑T

k=0 r(sk , ak)
For t = 0, . . . ,T :

θ ← θ + αr(τ) ∂
∂θ

log πθ(at | st)

Observation: actions should only be reinforced based on future
rewards, since they can’t possibly influence past rewards.

You can show that this still gives unbiased gradient estimates.

Repeat forever:

Sample a rollout τ = (s0, a0, s1, a1, . . . , sT , aT)
For t = 0, . . . ,T :

rt(τ)←
∑T

k=t r(sk , ak)
θ ← θ + αrt(τ) ∂

∂θ
log πθ(at | st)

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 18 / 29

RL for Classification

A classification task under RL formulation

one time step
state x: an image
action a: a digit class
reward r(x, a): 1 if correct, 0 if wrong
policy π(a | x): a distribution over categories

Compute using an MLP with softmax outputs – this is a policy network

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 19 / 29

RL for Classification

Original solution: use a surrogate loss function, e.g.
logistic-cross-entropy

RL formulation: in each episode, the agent is shown an image, guesses
a digit class, and receives a reward of 1 if it’s right or 0 if it’s wrong

We’d never actually do it this way, but it will give us an interesting
comparison with backprop

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 20 / 29

RL for Classification

Let zk denote the logits, yk denote the softmax output, t the integer
target, and tk the target one-hot representation.
To apply REINFORCE, we sample a ∼ πθ(· | x) and apply:

θ ← θ + αr(a, t)
∂

∂θ
log πθ(a | x)

= θ + αr(a, t)
∂

∂θ
log ya

= θ + αr(a, t)
∑
k

(ak − yk)
∂

∂θ
zk

Compare with the logistic regression SGD update:

θ ← θ + α
∂

∂θ
log yt

← θ + α
∑
k

(tk − yk)
∂

∂θ
zk

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 21 / 29

Reward Baselines

For reference:

θ ← θ + αr(a, t)
∂

∂θ
log πθ(a | x)

Clearly, we can add a constant offset to the reward, and we get an
equivalent optimization problem.

Behavior if r = 0 for wrong answers and r = 1 for correct answers

wrong: do nothing
correct: make the action more likely

If r = 10 for wrong answers and r = 11 for correct answers

wrong: make the action more likely
correct: make the action more likely (slightly stronger)

If r = −10 for wrong answers and r = −9 for correct answers

wrong: make the action less likely
correct: make the action less likely (slightly weaker)

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 22 / 29

Reward Baselines

Problem: the REINFORCE update depends on arbitrary constant
factors added to the reward.
Observation: we can subtract a baseline b from the reward without
biasing the gradient.

Ep(τ)

[
(r(τ)− b)

∂

∂θ
log p(τ)

]
= Ep(τ)

[
r(τ)

∂

∂θ
log p(τ)

]
− bEp(τ)

[
∂

∂θ
log p(τ)

]
= Ep(τ)

[
r(τ)

∂

∂θ
log p(τ)

]
− b

∑
τ

p(τ)
∂

∂θ
log p(τ)

= Ep(τ)

[
r(τ)

∂

∂θ
log p(τ)

]
− b

∑
τ

∂

∂θ
p(τ)

= Ep(τ)

[
r(τ)

∂

∂θ
log p(τ)

]
− 0

We’d like to pick a baseline such that good rewards are positive and
bad ones are negative.
E[r(τ)] is a good choice of baseline, but we can’t always compute it
easily. There’s lots of research on trying to approximate it.

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 23 / 29

More Tricks

We left out some more tricks that can make policy gradients work a
lot better.

Natural policy gradient corrects for the geometry of the space of
policies, preventing the policy from changing too quickly.
Rather than use the actual return, evaluate actions based on estimates
of future returns. This is a class of methods known as actor-critic,
which we’ll touch upon next lecture.

Trust region policy optimization (TRPO) and proximal policy
optimization (PPO) are modern policy gradient algorithms which are
very effective for continuous control problems.

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 24 / 29

Evolution Strategies

REINFORCE can handle discontinuous dynamics and reward
functions, but it requires a differentiable network since it computes
∂
∂θ log πθ(at | st)
Evolution strategies (ES) take the policy gradient idea a step further,
and avoid backprop entirely.

ES can use deterministic policies. It randomizes over the choice of
policy rather than over the choice of actions.

I.e., sample a random policy from a distribution pη(θ) parameterized
by η and apply the policy gradient trick

∂

∂η
Eθ∼pη [r(τ(θ))] = Eθ∼pη

[
r(τ(θ))

∂

∂η
log pη(θ)

]
The neural net architecture itself can be discontinuous.

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 25 / 29

Evolution Strategies

https://arxiv.org/pdf/1703.03864.pdf

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 26 / 29

https://arxiv.org/pdf/1703.03864.pdf

Evolution Strategies

The IEEE floating point standard is nonlinear, since small enough
numbers get truncated to zero.

This acts as a discontinuous activation
function, which ES is able to handle.

ES was able to train a good MNIST
classifier using a “linear” activation
function.

https://blog.openai.com/

nonlinear-computation-in-linear-networks/

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 27 / 29

https://blog.openai.com/nonlinear-computation-in-linear-networks/
https://blog.openai.com/nonlinear-computation-in-linear-networks/

Discussion

What’s so great about backprop and gradient descent?

Backprop does credit assignment – it tells you exactly which
activations and parameters should be adjusted upwards or downwards
to decrease the loss on some training example.
REINFORCE doesn’t do credit assignment. If a rollout happens to be
good, all the actions get reinforced, even if some of them were bad.
Reinforcing all the actions as a group leads to random walk behavior.

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 28 / 29

Discussion

Why policy gradient?

Can handle discontinuous cost functions
Don’t need an explicit model of the environment, i.e. rewards and
dynamics are treated as black boxes

Policy gradient is an example of model-free reinforcement learning,
since the agent doesn’t try to fit a model of the environment
Almost everyone thinks model-based approaches are needed for AI, but
nobody has a clue how to get it to work

Richard Zemel COMS 4995 Lecture 14: Reinforcement Learning 29 / 29

