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Neural Network



Overview

● Review: Overall Training Loop
● Initialization
● Optimization

○ Gradient Descent
○ Momentum
○ Learning Rate Schedulers: Adagrad, RMSProp, Adam

● Hyperparameter tuning: learning rate, batch size, regularization
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Initialization of Parameters
Initial parameters of the neural network can affect the gradients and learning

Idea 1: Constant initialization

● Result: For fully connected layers: identical gradients, identical 
neurons. Bad!

Idea 2: Random weights, to break symmetry

● Too large of initialization: exploding gradients
● Too small of initialization: vanishing gradients



Interactive Demo: Initialization

Source: Initializing neural networks. https://www.deeplearning.ai/ai-notes/initialization/

https://www.deeplearning.ai/ai-notes/initialization/
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Optimization
● Optimization: (informal) Minimize (or maximize) some quantity.
● Applications:

○ Engineering: Minimize fuel consumption of an automobile
○ Economics: Maximize returns on an investment
○ Supply Chain Logistics: Minimize time taken to fulfill an order
○ Life: Maximize happiness



Optimization: Batch Gradient Descent

Batch Gradient Descent:

● Initialize the parameters randomly

● For each iteration, do until convergence:

Learning rate (a small step)



Gradient Descent
Geometric interpretation:
● Gradient is perpendicular to the tangent of the level 

set curve 
● Given the current point, negative gradient direction 

decreases the function fastest
Alternative interpretation:
● Minimizing the first-order taylor approx of       keep 

the new point close to the current point

Source: Wikipedia



Stochastic Gradient Descent
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Randomly select a training sample     (or 
a small subset of the training samples)

○ Conduct gradient descent:

● Intuition: A noisy approximation 
of the gradient of the whole 
dataset

● Pro: each update requires a 
small amount of training data, 
good for training algorithms for a 
large-scale dataset

● Tips
○ Subsample without replacement so that you visit each point on each pass through the 

dataset ("epoch")
○ Divide the log-likelihood estimate by the size of mini-batches, making learning rate 

invariant to the mini-batch size.



Gradient Descent with Momentum
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Update the momentum

○ Conduct gradient descent:

● Pro:  “accelerate” learning by accumulating some “velocity/momentum” using 
the past gradients



Learning Rate Schedulers
What if we want to be able to have a per-parameter learning rate? 

● Certain parameter may be more sensitive (i.e. have higher curvature)



Learning Rate Schedulers: Adagrad
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Conduct gradient descent on i-th parameter:

Intuition:  It increases the learning rate for more sparse features and decreases 
the learning rate for less sparse ones, according to the history of the gradient



Learning Rate Schedulers: RMSprop/Adadelta
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Conduct gradient descent on i-th parameter:

Intuition:  Unlike Adagrad, the denominator places a significant weight on the 
most recent gradient. This also helps avoid decreasing learning rate too much.



Learning Rate Schedulers: Adam
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Conduct gradient descent on i-th parameter:

Bias-corrected forms of 
,

Paper Link

https://arxiv.org/pdf/1412.6980.pdf


Optimizers Comparison (excluding Adam)

Source: Sebastian Ruder, https://ruder.io/optimizing-gradient-descent/, Image: Alec Radford

SGD optimization on loss surface contours
SGD optimization on loss surface contours

https://ruder.io/optimizing-gradient-descent/
https://twitter.com/alecrad


Interactive Demo: Optimizers

Source: Parameter optimization in neural networks: https://www.deeplearning.ai/ai-notes/optimization/

https://www.deeplearning.ai/ai-notes/optimization/
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Learning Rate
Ideal Learning Rate should be:

● Should not be too big (objective will blow up )
● Should not be too small (takes longer to 

converge)

Convergence criteria:

● Change in objective function is close to zero
● Gradient norm is close to zero
● Validation error starts to increase (early-

stopping)
Idealized cartoon depiction of 
different learning rates.

Image Credit: Andrej Karpathy



Learning Rate: Decay Schedule
Anneal (decay) learning rate over time so the parameters can settle into a local 
minimum. Typical decay strategies:

1. Step Decay: reduce by factor every few epochs (e.g. a half every 5 epochs, 
or by 0.1 every 20 epochs), or when validation error stops improving

2. Exponential Decay: Set learning rate according to the equation

1. 1/t decay:

Iteration 
number

Hyperparam
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Batch Size
Batch Size: the number of training data points for computing the empirical risk at 
each iteration.

● Typical small batches are powers of 2:  32, 64, 128, 256, 512,
● Large batches are in the thousands

Large Batch Size has:

● Fewer frequency of updates
● More accurate gradient
● More parallelization efficiency / accelerates wallclock training
● May hurt generalization, perhaps by causing the algorithm to find poorer 

local optima/plateau.



Batch Size
Related papers on batch size:

● Goyal et al., Accurate, large minibatch SGD
○ Proposes to increase the learning rate by of the minibatch size

● Hoffer et al., Train longer generalize better
○ Proposes to increase the learning rate by square root of the minibatch size

● Smith et al., Don't decay the learning rate, increase the batch size 
○ Increasing batch size reduce noise, while maintaining same step size

https://arxiv.org/pdf/1706.02677.pdf
https://papers.nips.cc/paper/6770-train-longer-generalize-better-closing-the-generalization-gap-in-large-batch-training-of-neural-networks.pdf
https://arxiv.org/pdf/1711.00489.pdf


Hyperparameter Tuning
Several approaches for tuning multiple hyperparameters together:

Image source: Random Search for Hyper-Parameter Optimization

Prefer 
random 
search over 
grid search,
higher 
chance of 
finding better 
performing 
hyper param

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf


Hyperparameter Tuning
Search hyperparameter on log scale:

● learning_rate = 10 ** uniform(-6, 1)
○ Learning rate and regularization strength have multiplicative effects on the training dynamics

● Start from coarse ranges then narrow down, or expand range if near the 
boundary of range

One validation fold vs cross-validation:

● Simplifies code base to just use one (sizeable) validation set vs doing cross 
validation
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