2024
- A. Nazaret, C. Shi, and D. Blei. On the misspecification of
linear assumptions in synthetic controls. Artificial
Intelligence and Statistics, 2024.
[paper]
- Y. Park and D. Blei. Density uncertainty layers for reliable uncertainty estimation. Artificial Intelligence and Statistics, 2024.
[paper]
- C. de Bacco, Y. Wang, and D. Blei. A causality-inspired
plus-minus model for player evaluation in team
sports. Causal Learning and Reasoning, 2024.
[paper]
- G. Moran, D. Blei, and R. Ranganath. Holdout predictive
checks for Bayesian model criticism. Journal of the Royal
Statistical Society, Series B, 86(1):194-214, 2024.
[paper]
- M. Yin, C. Shi, Y. Wang, and D. Blei. Conformal
sensitivity analysis for individual treatment
effects. Journal of the American Statistical
Association, 19(545):122-135, 2024.
[paper]
2023
- K. Vafa, E. Palikot, T. Du, A. Kanodia, S. Athey, and D. Blei.
CAREER: A foundation model for labor sequence data.
Transactions on Machine Learning Research , 2024.
[paper]
- C. Zheng, K. Vafa, and D. Blei. Revisiting topic-guided language
models. Transactions on Machine Learning Research, 2023.
[paper]
- G. Moran, J. Cunningham, D. Blei. The posterior
predictive null. Bayesian Analysis, 18(4):194-214, 2023.
[paper] [code]
- A. Feder, Y. Wald, C. Shi, S. Saria, and D. Blei.
Causal-structure driven augmentations for text OOD
generalization. Neural Information Processing Systems,
2023.
[paper]
- C. Modi, R. Gower, C. Margossian, Y. Yao, D. Blei, and
L. Saul. Variational inference with Gaussian score
matching. Neural Information Processing Systems,
2023.
[paper]
- N. Scherrer, C. Shi, A. Feder, and D. Blei.
Evaluating the moral beliefs encoded in LLMs. Neural
Information Processing Systems, 2023.
[paper]
- J. von Kugelgen, M. Besserve, W. Liang, L. Gresele, A. Kekic,
E. Bareinboim, D. Blei, and B. Scholkopf. Nonparametric
identifiability of causal representations from unknown
interventions. Neural Information Processing Systems,
2023.
[paper]
- L. Wu, B. Trippe, C. Naesseth, D. Blei, and
J. Cunningham. Practical and asymptotically exact
conditional sampling in diffusion models. Neural
Information Processing Systems, 2023.
[paper]
- L. Zhang, D. Blei, and C. Naesseth. Transport score
climbing: Variational inference using forward KL and adaptive
neural transport. Transactions on Machine Learning
Research, 2023.
[paper]
- C. Zheng, C. Shi, K. Vafa, A. Feder, and D. Blei. An
invariant learning characterization of controlled text
generation. Association for Computational Linguistics,
2023.
[paper]
- Y. Wang, D. Sridhar, and D. Blei. Adjusting machine
learning decisions for equal opportunity and counterfactual
fairness. Transactions on Machine Learning
Research, 2023.
[paper]
- C. Modi, Y. Li, and D. Blei. Reconstructing the
universe with variational self-boosted sampling. Journal of
Cosmology and Astroparticle Physics, 059, 2023.
[paper]
- Z. Wang, R. Gao, M. Yin, M. Zhou, and
D. Blei. Probabilistic conformal prediction using conditional
random samples. Artificial Intelligence and
Statistics, 2023.
[paper]
2022
- L. Zhang, Y. Wang, M. Schuemie, D. Blei, and
G. Hripcsak. Adjusting for indirectly measured
confounding using large-scale propensity score. Journal of
Biomedical Informatics, 134, 2022.
[paper]
- D. Sridhar and D. Blei. Causal inference from text: A
commentary. Science Advances, 8(42), 2022.
[paper]
- G. Moran, D. Sridhar, Y. Wang, and D. Blei.
Identifiable deep generative models via sparse
decoding. Transactions on Machine Learning
Research, 2022.
[paper]
- A. Miller, L. Anderson, B. Leistedt, J. Cunningham, D. Hogg,
and D. Blei. Mapping interstellar dust with Gaussian
processes. Annals of Applied Statistics,
16:2672-2692, 2022.
[paper]
- A. Nazaret and D. Blei. Variational inference for
infinitely deep neural networks. International Conference
on Machine Learning, 2022.
[paper]
- C. Shi, D. Sridhar, V. Misra, and D. Blei. On the
assumptions of synthetic control methods. Artificial
Intelligence and Statistics, 2022.
[paper]
[code]
- D. Sridhar, C. D. Bacco, and D. Blei. Estimating social
influence from observational data. Causal Learning and
Reasoning, 2022.
[paper]
[code]
- S. Menon, D. Blei, and C. Vondrick. Forget-me-not!
Contrastive critics for mitigating posterior collapse.
Uncertainty in Artificial Intelligence, 2022.
[paper]
- D. Sridhar, H. Daume, and D. Blei. Heterogeneous
supervised topic models for text prediction.
Transactions of the Association for Computational
Linguistics, 10:732-745, 2022.
[paper]
[code]
- W. Tansey, V. Veitch, H. Zhang, R. Rabadan, D. Blei. The
holdout randomization test for feature selection in black box
models. Journal of Computational and Graphical
Statistics , 31(1):151-162, 2022.
[paper]
[code]
- W. Tansey, C. Tosh, and D. Blei. A Bayesian model of
dose-response for cancer drug studies. Annals of
Applied Statistics, 16(2):680-705.
[paper]
[code]
2021
- J. Loper, D. Blei, J. Cunningham, and L. Paninski. A
general linear-time inference method for Gaussian processes on
one dimension. Journal of Machine Learning Research,
22(234):1–36, 2021.
[paper]
- Y. Wang, D. Blei, and J. Cunningham. Posterior
collapse and latent variable non-identifiability. Neural
Information Processing Systems, 2021.
[paper]
- Y. Park, S. Lee, G. Kim, and D. Blei. Unsupervised
representation learning via neural activation coding.
International Conference on Machine Learning, 2021.
[paper]
[code]
- Y. Wang and D. Blei. A proxy variable view of shared
confounding. International Conference on Machine
Learning , 2021.
[paper] [code]
- C. Shi, V. Veitch, and D. Blei. Invariant representation
learning for treatment effect estimation. Uncertainty in
Artificial Intelligence, 2021.
[paper]
[code]
- A. Moretti and L. Zhang and C. Naesseth and H. Venner and
D. Blei and I. Pe’er. Variational combinatorial sequential Monte
Carlo methods for Bayesian phylogenetic inference.
Uncertainty in Artificial Intelligence, 2021.
[paper]
[code]
- L. Wu, A. Miller, L. Anderson, G. Pleiss, D. Blei, and
J. Cunningham. Hierachical inducing point Gaussian process
for inter-domian observations. Artificial Intelligence
and Statistics, 2021.
[paper]
[code]
- A. Schein, K. Vafa, D. Sridhar, V. Veitch, J. Quinn,
J. Moffet, D. Blei, and D. Green. Assessing the effects of
friend-to-friend texting on turnout in the 2018 US midterm
elections. The Web Conference, 2021. [paper]
[code]
- W. Tansey, K. Li, H. Zhang, S. Linderman, D. Blei,
R. Rabadan, and C. Wiggins. Dose-response modeling in
high-throughput cancer drug screenings: An end-to-end
approach. Biostatistics, to appear. [paper]
[code]
2020
- W. Tansey, Y. Wang, R. Rabadan, and D. Blei. Double empirical
Bayes testing. International Statistical Review,
88, 2020.
[paper]
[code]
- C. Naesseth, F. Lindsten, and D. Blei. Markovian score
climbing: Variational inference with KL(p||q). Neural
Information Processing Systems, 2020.
[paper]
[code]
- Y. Wang, D. Liang, L. Charlin, and D. Blei. Causal
inference for recommender systems. ACM Conference on
Recommender Systems, 2020.
[paper]
[code]
- A. Dieng, F. Ruiz, and D. Blei. Topic modeling in
embedding spaces. Transactions of the Association
for Computational Linguistics, 8:439-453, 2020.
[paper]
[code]
- F. Ruiz, S. Athey, and D. Blei. SHOPPER: A probabilistic
model of consumer choice with substitutes and
complements. Annals of Applied Statistics, 14(1):1-27,
03 2020.
[paper]
[code]
- K. Vafa, S. Naidu, and D. Blei. Text-based ideal
points. Association for Computational
Linguistics, 2020. [paper] [code] [tutorial]
[slides]
- V. Veitch, D. Sridhar, and D. Blei. Adapting text
embeddings for causal inference. Uncertainty in
Artificial Intelligence, 2020. [paper] [code]
2019
- Y. Wang and D. Blei. The blessings of multiple
causes. Journal of the American Statistical
Association, 114:528, 1574-1596, 2019. [paper]
[slides] [tutorial]
[code]
- C. Shi, D. Blei, and V. Veitch. Adapting neural
networks for the estimation of treatment effects. In Neural
Information Processing Systems, 2019.
[paper]
[code]
- V. Veitch, Y. Wang, and D. Blei. Using embeddings
to correct for unobserved confounding in networks. In
Neural Information Processing Systems, 2019.
[paper]
[code]
- Y. Wang and D. Blei. Variational Bayes under model
misspecification. In Neural Information Processing
Systems, 2019.
[paper]
[code]
- A. Schein, S. Linderman, M. Zhou, D. Blei, and
H. Wallach. Poisson-randomized gamma dynamical
systems. In Neural Information Processing Systems,
2019. [paper]
[code]
- Y. Wang and D. Blei.   Frequentist consistency of
variational Bayes.   Journal of the American
Statistical Association, 114:527, 1147-1161, 2019.
[paper]
- L. Zhang, Y. Wang, A. Ostropolets, J. Mulgrave, D. Blei, and
G. Hripcsak. The medical deconfounder: Assessing treatment
effects with electronic health records. In Machine
Learning for Health Care, 2019. [paper]
[code]
- H. Levitin, J. Yuan, Y. Cheng, F. Ruiz, E. Bush, J. Bruce,
P. Canoll, A. Iavarone, A. Lasorella, D. Blei, and P. Sims. De novo
gene signature identification from single-cell RNA-seq with
hierarchical Poisson factorization. Molecular Systems
Biology, 15(e8557), 2019. [paper]
[code]
- A. Dieng, Y. Kim, A. Rush, and D. Blei. Avoiding latent
variable collapse with generative skip models. Artificial
Intelligence and Statistics, 2019. [paper]
[code]
- V. Veitch, M. Austern, W. Zhou, D. Blei, and
P. Orbanz. Empirical risk minimization and stochastic gradient
descent for relational data. Artificial Intelligence and
Statistics, 2019. [paper] [code]
2018
- R. Ranganath and D. Blei. Correlated random
measures. Journal of the American Statistical
Association, 113(521):417-430, 2018. [paper]
- C. Wang and D. Blei. A general method for robust Bayesian
modeling.   Bayesian Analysis,
4(13):1163-1191, 2018. [paper]
- J. Manning, X. Zhu, T. Willke, R. Ranganath, K. Stachenfeld,
U. Hasson, D. Blei, and K. Norman. A probabilistic approach to
discovering dynamic full-brain functional connectivity
patterns. NeuroImage, 180:243-252. [paper]
- S. Athey, D. Blei, R. Donnelly, F. Ruiz, and
T. Schmidt. Estimating heterogeneous consumer preferences
for restaurants and travel time using mobile location
data. AEA Papers and Proceedings, 108:64-67,
2018. [paper]
- A. Dieng, R. Ranganath, J. Altosaar, and
D. Blei. Noisin: Unbiased regularization for recurrent
neural networks. International Conference on Machine
Learning, 2018. [paper]
- F. Ruiz, M. Titsias, A. Dieng, and D. Blei. Augment
and reduce: Stochastic inference for large categorical
distributions. International Conference on Machine
Learning, 2018. [paper]
- W. Tansey, Y. Wang, D. Blei, and R. Rabadan. Black box
FDR. International Conference on Machine
Learning, 2018. [paper]
- D. Tran and D. Blei. Implicit causal models for
genome-wide association studies. International Conference
on Learning Representations, 2018.
[paper]
- D. Blei. Expressive probabilistic models and
scalable method of moments. Communications of the
ACM, 61(4):84, 2018. [paper]
- A. Gerow, Y. Hu, J. Boyd-Graber, D. Blei, and J. Evans.
Measuring discursive influence across scholarship.
Proceedings of the National Academy of Sciences,
115(13):3308-3313, 2018. [paper]
- C. Naesseth, S. Linderman, R. Ranganath, and D. Blei.
Variational sequential Monte Carlo. Artificial
Intelligence and Statistics, 2018. [paper]
- J. Altosaar, R. Ranganath, and D. Blei. Proximity
variational inference. Artificial Intelligence and
Statistics, 2018. [paper]
- M. Rudolph and D. Blei. Dynamic embeddings for
language evolution. International World Wide Web
Conference, 2018. [paper]
2017
- S. Mandt, M. Hoffman, and D. Blei. Stochastic gradient
descent as approximate Bayesian inference. Journal of
Machine Learning Research, 18:1-35, 2017.   [paper]
- M. Rudolph, F. Ruiz, S. Athey, and D. Blei.
Structured embedding models for grouped data.
Neural Information Processing Systems, 2017. [paper]
- A. Dieng, D. Tran, R. Ranganath, J. Paisley, and
D. Blei. Variational inference via chi upper bound
minimization. Neural Information Processing
Systems, 2017. [paper]
- L. Liu, F. Ruiz, S. Athey, and D. Blei. Context selection for
embedding models. Neural Information Processing
Systems, 2017. [paper]
- D. Tran, R. Ranganath, and D. Blei.   Hierararchical implicit
models and likelihood-free variational inference. Neural
Information Processing Systems, 2017.   [paper]
- D. Blei and P. Smyth.   Science and data science.
Proceedings of the National Academy of Sciences,
114(33):8689-8692, 2017.   [paper]
- L. Liu and D. Blei.   Zero-inflated exponential family
embeddings. International Conference on Machine
Learning, 2017. [paper]
- Y. Wang, A. Kucukelbir, and D. Blei.   Robust
probabilistic modeling with Bayesian data reweighting.  
International Conference on Machine Learning, 2017.  
[paper]
[code]
- A. Kucukelbir, Y. Wang, and D. Blei.   Evaluating
Bayesian models with posterior dispersion indices.  
International Conference on Machine Learning, 2017.
[paper]
[code]
- D. Blei, A. Kucukelbir, and J. McAuliffe.  
Variational inference: A review for statisticians. 
Journal of the American Statistical Association,
112(518):859-877, 2017.
[paper]
[errata]
- A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and
D. Blei.   Automatic differentiation variational
inference.   Journal of Machine Learning Research,
18(14):1-45, 2017.  
[paper]
- S. Linderman, M. Johnson, A. Miller, R. Adams, D. Blei, and
L. Paninski.   Bayesian learning and inference in recurrent
switching linear dynamical systems.   Artificial
Intelligence and Statistics, 2017.   [paper]
- C. Naesseth, F. Ruiz, S. Linderman, and D. Blei.  
Reparameterization gradients through acceptance-rejection
sampling algorithms. Artificial Intelligence and
Statistics, 2017.   [paper]
- D. Tran, M. Hoffman, R. Sauraus, E. Brevdo, K. Murphy, and
D. Blei.   Deep probabilistic programming.  
International Conference on Learning Representations,
2017.   [paper]
2016
- P. Gopalan, W. Hao, D. Blei, and J. Storey. Scaling
probabilistic models of genetic variation to millions of
humans.   Nature Genetics, 48:1587-1590.   [paper] [preprint]
[errata]
- M. Rudolph, F. Ruiz, S. Mandt, and D. Blei.  
Exponential family embeddings.   Neural Information
Processing Systems, 2016.   [paper]
- R. Ranganath, J. Altosaar, D. Tran, and D. Blei.  
Operator variational inference.   Neural Information
Processing Systems, 2016.   [paper]
- F. Ruiz, M. Titsias, and D. Blei.   The generalized
reparameterization gradient.   Neural Information
Processing Systems, 2016.   [paper]
- R. Ranganath, A. Perotte, N. Elhadad, and D. Blei.   Deep
survival analysis.   Machine Learning for Health Care,
2016.   [paper]
- A. Chaney, H. Wallach, M. Connelly, and D. Blei.  
Detecting and characterizing events.   Empirical Methods in
Natural Language Processing, 2016.   [paper]
- D. Liang, J. Altosaar, L. Charlin, and D. Blei.  
Factorization meets the item embedding: Regularizing matrix
factorization with item co-occurrence.   ACM
Conference on Recommendation Systems, 2016. [paper]
- F. Ruiz, M. Titsias, and D. Blei.   Overdispersed
black-box variational inference.   Uncertainty in
Artificial Intelligence, 2016. [paper]
- R. Ranganath, D. Tran, and D. Blei.   Hierarchical
variational models.   International Conference on
Machine Learning, 2016.   [paper]
- A. Schein, M. Zhou, D. Blei, and H. Wallach.  
Bayesian Poisson Tucker decomposition for learning the
structure of international relations.   International
Conference on Machine Learning, 2016.   [paper]
- S. Mandt, M. Hoffman, and D. Blei.   A variational
analysis of stochastic gradient algorithms.  
International Conference on Machine Learning, 2016.  
[paper]
- S. Mandt, J. McInerney, F. Abrol, R. Ranganath, and
D. Blei.   Variational tempering.   Artificial
Intelligence and Statistics, 2016.   [paper]
- D. Tran, R. Ranganath, and D. Blei.   The variational
Gaussian process.   International Conference on
Learning Representations, 2016.   [paper]
- D. Liang, L. Charlin, J. McInerney, and D. Blei.  
Modeling user exposure in recommendation.   International
World Wide Web Conference, 2016. [paper] [code]
- M. Rudolph, J. Ellis, and D. Blei.   Objective
variables for probabilistic revenue maximization in second-price
auctions with reserve.   International World Wide
Web Conference, 2016.  
[paper]
2015
- A. Kucukelbir, R. Ranganath, A. Gelman, and D. Blei.  
Automatic variational inference in Stan.   Neural Information
Processing Systems , 2015.   [paper]
- J. McInerney, R. Ranganath, and D. Blei.   The
population posterior and Bayesian inference on streams.  
Neural Information Processing Systems , 2015.   [paper]
- D. Tran, D. Blei, and E. Airoldi.   Copula variational
inference.   Neural Information Processing Systems ,
2015.   [paper]
- L. Charlin, R. Ranganath, J. McInerney, and D. Blei.  
Dynamic Poisson factorization.   ACM Conference on
Recommendation Systems , 2015.   [paper]
- A. Chaney, D. Blei, and T. Eliassi-Rad.   A probabilistic
model for using social networks in personalized item recommendation
  ACM Conference on Recommendation Systems ,
2015.   [paper]
- D. Mimno, D. Blei, and B. Engelhardt.   Posterior
predictive checks to quantify lack-of-fit in admixture models of
latent population structure.   Proceedings of the
National Academy of Sciences, 112(26), 2015.   [paper]
- P. Gopalan, J. Hofman, and D. Blei.   Scalable
recommendation with hierarchical Poisson factorization.  
Uncertainty in Artificial Intelligence, 2015.   [paper]
- A. Kucukelbir and D. Blei.   Population empirical
Bayes.   Uncertainty in Artificial Intelligence,
2015.   [paper]
- R. Ranganath, A. Perotte, N. Elhadad, and D. Blei.  
The survival filter: Joint survival analysis with a latent time
series.   Uncertainty in Artificial Intelligence,
2015.  
[paper]
- A. Schein, J. Paisley, D. Blei, and H. Wallach.  
Bayesian Poisson tensor factorization for inferring multilateral
relations from sparse dyadic event counts.   Knowledge
Discovery and Data Mining, 2015.   [paper]
- R. Ranganath, L. Tang, L. Charlin, and D. Blei.   Deep
exponential families.   Artificial Intelligence and
Statistics, 2015.   [paper]
- M. Hoffman and D. Blei.   Structured stochastic
variational inference.   Artificial Intelligence and
Statistics, 2015.   [paper]
- A. Perotte, R. Ranganath, J. Hirsch, D. Blei, and
N. Elhadad.   Risk prediction for chronic kidney disease
progression using heterogeneous electronic health record data and
time series analysis.   Journal of the American Medical
Informatics Association, 22(4), 2015.   [paper]
- J. Paisley, C. Wang, D. Blei, and M. Jordan.   Nested
hierarchical Dirichlet processes.   IEEE Transactions on
Pattern Analysis and Machine Intelligence, 37 (2), 2015.  
[paper]
- G. Polatkan, M. Zhou, L. Carin, D. Blei, and
I. Daubechies.   A Bayesian nonparametric approach to image
super-resolution.   IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37 (2), 2015.   [paper]
- S. Gershman, P. Frazier, and D. Blei.   Distance
dependent infinite latent feature models.   IEEE
Transactions on Pattern Analysis and Machine Intelligence, 37
(2), 2015.   [paper] [supplement] [code]
2014
- S. Mandt and D. Blei.   Smoothed gradients for
stochastic variational inference.   Neural Information
Processing Systems, 2014.   [paper]
- P. Gopalan, L. Charlin, and D. Blei.   Content-based
recommendations with Poisson factorization.   Neural
Information Processing Systems, 2014.   [paper]
- N. Houlsby and D. Blei.   A filtering approach to
stochastic variational inference.   Neural Information
Processing Systems, 2014.   [paper]
- S. Gershman, D. Blei, K. Norman, and P. Sederberg.  
Decomposing spatiotemporal brain patterns into topographic latent
sources.
 
NeuroImage, 98:91--102.
  [Preprint]
[code]
- J. Manning, R. Ranganath, K. Norman, and D. Blei.  
Topographic factor analysis: A Bayesian model for inferring brain
networks from neural data.   PLoS ONE, 9(5),
2014.   [paper]
- R. Ranganath, S. Gerrish, and D. Blei.   Black box
variational inference.   Artificial Intelligence and
Statistics, 2014.   [paper]
- P. Gopalan, F. Ruiz, R. Ranganath, and D. Blei.  
Bayesian nonparametric Poisson factorization for
recommendation systems.   Artificial Intelligence and
Statistics, 2014.   [paper]
- D. Blei.   Build, compute, critique, repeat: Data
analysis with latent variable models.   Annual Review of
Statistics and Its Applicaton 1:203-232, 2014.   [paper]
- M. Rabinovich and D. Blei.   The inverse regression
topic model.   International Conference on Machine
Learning, 2014.   [paper]
[supplement]
2013
- P. Gopalan, C. Wang, and D. Blei.   Modeling
overlapping communities with node popularities.  
Neural Information Processing Systems, 2013.   [paper]
- D. Kim, P. Gopalan, D. Blei, and E. Sudderth.  
Efficient online inference for Bayesian nonparametric relational
models.   Neural Information Processing Systems,
2013   [paper]
- P. Gopalan and D. Blei.   Efficient discovery of
overlapping communities in massive networks.  
Proceedings of the National Academy of Sciences, 110 (36)
14534-14539, 2013.   [paper]
- P. DiMaggio, M. Nag, and D. Blei. Exploiting affinities
between topic modeling and the sociological perspective on culture:
Application to newspaper coverage of U.S. government arts
funding.   Poetics, 41:6, 2013.  
[Poetics]
- M. Hoffman, D. Blei, J. Paisley, and C. Wang.  
Stochastic variational inference.   Journal of
Machine Learning Research, 14:1303-1347, 2013.   [paper]
- C. Wang and D. Blei.   Variational inference in
nonconjugate models.   Journal of Machine Learning
Research, 14:1005-1031, 2013.  
[paper]
[code]
- D. Blei.   Topic modeling and digital humanities.
  Journal of Digital Humanities, 2(1), 2013.   [Link]
- R. Ranganath, C. Wang, D. Blei, and E. Xing.  An
adaptive learning rate for stochastic variational inference.
  International Conference on Machine Learning, 2013.
[paper]
- B. Chen, G. Polatkan, G. Sapiro, D. Blei, D. Dunson, and
L. Carin.   Deep learning with hierarchical convolutional
factor analysis.   IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8:1887-1901, 2013.   [paper]
2012
- S. Gerrish and D. Blei.   How they vote: Issue-adjusted
models of legislative behavior   Neural Information
Processing Systems, 2012.   [paper] [code]
- P. Gopalan, D. Mimno, S. Gerrish, M. Freedman, and
D. Blei.   Scalable inference of overlapping
communities.   Neural Information Processing Systems,
2012.   [paper]
- C. Wang and D. Blei.   Truncation-free stochastic
variational inference for Bayesian nonparametric models.  
Neural Information Processing Systems, 2012.   [paper]
- D. Blei.  
Probabilistic topic models.  
Communications of the ACM, 55(4):77–84, 2012.  
[paper]
- J. Paisley, C. Wang, and D. Blei.   The discrete
infinite logistic normal distribution.   Bayesian
Analysis, 7(2):235–272, 2012.   [paper] [code] [matlab]
- J. Paisley, D. Blei, and M. Jordan.  
Variational Bayesian inference with stochastic search.  
International Conference on Machine Learning,
2012.   [paper]
- D. Mimno, M. Hoffman, and D. Blei.   Sparse stochastic
inference for latent Dirichlet allocation.  
International Conference on Machine Learning, 2012.   [paper] [code]
- S. Gershman, M. Hoffman, and D. Blei.  
Nonparametric variational inference.  
International Conference on Machine Learning, 2012.  
[paper]
[code]
- A. Chaney and D. Blei.   Visualizing topic models.  
International AAAI Conference on Social Media and Weblogs,
2012.   [paper]
- J. Paisley, D. Blei, and M. Jordan.   Stick-breaking
beta processes and the Poisson process.   Artificial
Intelligence and Statistics, 2012.   [paper]
- S. Gershman and D. Blei.   A tutorial on Bayesian
nonparametric models.   Journal of Mathematical Psychology,
56:1–12, 2012.   [paper]
2011
- S. Ghosh, A. Ungureunu, E. Sudderth, and D. Blei.  
Spatial distance dependent Chinese restaurant processes for image
segmentation.   Neural Information Processing
Systems, 2011.   [paper]
- D. Blei. and P. Frazier.   Distance dependent Chinese
restaurant processes.   Journal of Machine Learning
Reseach, 12:2461–2488, 2011.   [paper] [code]
- L. Hannah, D. Blei, and W. Powell.   Dirichlet process
mixtures of generalized linear models.   Journal of
Machine Learning Research, 12:1923–1953.   [paper]
- C. Wang and D. Blei.   Collaborative topic modeling for
recommending scientific articles. Knowledge Discovery and
Data Mining, 2011.   (Best Student Paper Award)   [paper] [code]
- D. Mimno and D. Blei.   Bayesian checking of topic
models.   Empirical Methods in Natural Language
Processing, 2011.   [paper]
- S. Gershman, D. Blei, F. Pereira, and K. Norman.   A
topographic latent source model for fMRI data.  
NeuroImage, 57:89–100, 2011.
- J. Paisley, L. Carin, and D. Blei.   Variational inference
for stick-breaking beta processes.   International
Conference on Machine Learning, 2011.  
[paper]
- S. Gerrish and D. Blei.   Predicting legislative roll calls
from text.   International Conference on Machine
Learning, 2011.   (Distinguished Application Paper
Award)   [paper]
- J. Paisley, C. Wang, and D. Blei.   The discrete infinite
logistic normal distribution for mixed-membership
modeling.   Artificial Intelligence and Statistics,
2011.   (Notable Paper Award)  
[paper]
[code] [matlab]
- C. Wang, J. Paisley, and D. Blei.   Online variational
inference for the hierarchical Dirichlet process.  
Artificial Intelligence and Statistics , 2011.
[paper]
[code]
2010
- M. Hoffman, D. Blei, and F. Bach.  
Online learning for latent Dirichlet allocation  
Neural Information Processing Systems, 2010.   [paper] [supplement]
[code]
- L. Hannah, W. Powell, and D. Blei.  
Nonparametric density estimation for stochastic optimization with
an observable state variable  
Neural Information Processing Systems, 2010.   [paper]
[supplement]
[long paper]
- J. Chang and D. Blei.   Hierarchical relational models
for document networks.   Annals of Applied
Statistics, 4(1):124–150, 2010.  
[paper]
[code]
- D. Blei and P. Frazier.   Distance dependent Chinese
restaurant processes.   International Conference on
Machine Learning, 2010.  
[paper]
[long paper]
[code]
- S. Gerrish and D. Blei.   A language-based approach to
measuring scholarly impact.   International Conference on
Machine Learning, 2010.  
[paper]
- M. Hoffman, D. Blei, and P. Cook.   Bayesian
nonparametric matrix factorization for recorded music.  
International Conference on Machine Learning, 2010.  
[paper]
- S. Williamson, C. Wang, K. Heller, and D. Blei.   The IBP
compound Dirichlet process and its application to focused topic
modeling.   International Conference on Machine
Learning, 2010.  
[paper]
- J. Li, C. Wang, Y. Lim, D. Blei, and L. Fei-Fei.  
Building and using a semantivisual image hierarchy.  
Computer Vision and Pattern Recognition, 2010.  
[paper]
- S. Cohen, D. Blei, and N. Smith.   Variational inference
for adaptor grammars.   North American Chapter of the
Association for Computational Linguistics, 2010.  
[paper]
- L. Hannah, D. Blei, and W. Powell.  
Dirichlet process mixtures of generalized linear models.
Artificial Intelligence and Statistics, 2010.   [paper]
- A. Lorbert, D. Eis, V. Kostina, D. Blei, and P. Ramadge.  
Exploiting covariate similarity in sparse regression via the
pairwise elastic net. Artificial Intelligence and
Statistics, 2010.   [paper]
- D. Blei, T. Griffiths, and M. Jordan.   The nested
Chinese restaurant process and Bayesian nonparametric inference of
topic hierarchies.   Journal of the ACM, 57:2 1–30, 2010.  
[paper]
[code]
[JACM abstracts]
- S. Gershman, D. Blei, and Y. Niv.   Context, Learning and
Extinction   Psychological Review 117:1 197–209,
2010.   [paper]
2009
- J. Chang, J. Boyd-Graber, S. Gerrish, C. Wang, and D. Blei.  
Reading tea leaves: How humans interpret topic models .  
Neural Information Processing Systems, 2009.   [paper]
- C. Wang and D. Blei.  
Decoupling sparsity and smoothness in the discrete hierarchical
Dirichlet process.  
Neural Information Processing Systems, 2009.   [paper] [supplement]
- C. Wang and D. Blei.  
Variational inference for the nested Chinese restaurant process.
Neural Information Processing Systems, 2009.   [paper]
- R. Socher, S. Gershman, A. Perotte, P. Sederberg, D. Blei, and
K. Norman. A Bayesian analysis of dynamics in free recall.
Neural Information Processing Systems, 2009.   [paper] [code and data]
- M. Hoffman, D. Blei, P. Cook.   Finding Latent Sources
in Recorded Music With a Shift-Invariant HDP.  
International Conference on Digital Audio Effects, 2009.  
[paper]
- J. Boyd-Graber and D. Blei.   Multilingual topic models
for unaligned text.   Uncertainty in Artificial
Intelligence, 2009.  
[paper]
- J. Chang, J. Boyd-Graber, and D. Blei.   Connections
between the lines: Augmenting social networks with text.
  Knowledge Discovery and Data Mining, 2009.  
[paper]
[code]
- C. Wang, D. Blei., and L. Fei-Fei.   Simultaneous image
classification and annotation.   Computer Vision and
Pattern Recognition, 2009.  
[paper]
[code]
- M. Hoffman, P. Cook, and D. Blei.   Bayesian spectral
matching: Turning Young MC into MC Hammer via MCMC sampling
International Computer Music Conference, 2009.
  [paper]
- J. Chang and D. Blei.   Relational Topic Models for
Document Networks . Artificial Intelligence and
Statistics, 2009.   [paper] [long version]
- C. Wang, B. Thiesson, C. Meek, and D. Blei.   Markov
topic models.   Artificial Intelligence and
Statistics, 2009.  
[paper]
- M. Hoffman, D. Blei, and P. Cook.   Easy as CBA: A simple
probabilistic model for tagging music. International Conference on Music Information Retrieval, 2009.   (Best Student Paper Award)
  [paper]
- D. Blei and J. Lafferty.   Topic Models.   In
A. Srivastava and M. Sahami, editors, Text Mining:
Classification, Clustering, and Applications . Chapman &
Hall/CRC Data Mining and Knowledge Discovery Series, 2009.  
[paper]
2008
- E. Airoldi, D. Blei, S. Fienberg, and E. Xing.   Mixed
membership stochastic blockmodels.   Journal of Machine
Learning Research , 9:1981--2014, 2008 .  
[paper] [code]
[Shorter version from NIPS 2008]
- I. Mukherjee and D. Blei.   Relative performance
guarantees for approximate inference in latent Dirichlet
allocation.   Neural Information Processing Systems,
2008.  
[paper]
- J. Boyd-Graber and D. Blei.   Syntactic topic models.
  Neural Information Processing Systems, 2008.   [paper] [supplement] [long version]
- M. Hoffman,
D. Blei, and P. Cook.
Content-based musical similarity computation using the hierarchical
Dirichlet process. In International Conference on Music
Information Retrieval,
2008. [paper]
- M. Hoffman,
P. Cook, and D. Blei.
Data-driven recomposition using the hierarchical Dirichlet process
hidden Markov model. In International Computer Music
Conference,
2008. [paper]
- C. Wang, D. Blei, and D. Heckerman. Continuous time dynamic
topic models. In Uncertainty in Artificial Intelligence
[UAI], 2008. [paper]
2007
- D. Blei,
J. McAuliffe. Supervised topic models. Neural
Information Processing Systems 21, 2007. [paper] [long version] [digg data] [code]
- J. Boyd-Graber, D. Blei,
and X. Zhu. A topic model for word sense disambiguation.
In Empirical Methods in Natural Language Processing,
2007. [paper]
- W. Li, D. Blei, and
A. McCallum. Nonparametric Bayes pachinko allocation.
In The 23rd Conference on Uncertainty in Artificial
Intelligence,
2007. [paper]
- D. Kaplan and D. Blei. A
computational approach to style in American poetry. In IEEE
Conference on Data Mining, 2007.
- D. Blei and J. Lafferty. A
correlated topic model of Science. Annals of Applied
Statistics. 1:1 17–35, 2007. [paper] [code] [browser]
- M. Dudik, D. Blei, and
R. Schapire. Hierarchical maximum entropy density
estimation.
Proceedings of the 24th International Conference on Machine
Learning, 2007.
[paper]
2006
- D. Blei and
J. Lafferty. Dynamic topic models. In Proceedings
of the 23rd International Conference on Machine Learning,
2006. [paper]
- D. Blei and J. Lafferty. Correlated Topic Models.
Neural Information Processing Systems, 2006. [paper] [long version] [code]
-
J. McAuliffe, D. Blei, and M. Jordan. Nonparametric empirical Bayes for
the Dirichlet process mixture model.
Statistics and Computing, 16[1]:5–14, 2006.
[Springer]
[TR paper]
[R code]
-
D. Blei and M. Jordan. Variational inference for Dirichlet process
mixtures.
Journal of Bayesian Analysis, 1[1]:121–144, 2006.
[A shorter version appeared in ICML 2004].
[paper]
- Y. Teh, M. Jordan, M. Beal,
and D. Blei. Hierarchical Dirichlet processes.
Journal of the American Statistical Association,
2006. 101[476]:1566-1581.
[paper]
[matlab]
[code]
Before 2006
-
T. Griffiths, M. Steyvers, D. Blei, and J. Tenenbaum. Integrating topics and
syntax.
Neural Information Processing Systems 17, 2005.
[paper]
-
D. Blei. Probabilistic Models of Text and Images.
PhD thesis, U.C. Berkeley, Division of Computer Science, 2004.
[paper]
-
D. Blei and M. Jordan. Modeling annotated data.
In Proceedings of the 26th annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 127–134. ACM
Press, 2003.
[paper]
-
D. Blei, T. Griffiths, M. Jordan, and J. Tenenbaum. Hierarchical topic
models and the nested Chinese restaurant process.
Neural Information Processing Systems 16, 2003.
[paper]
-
K. Barnard, P. Duygulu, N. de Freitas, D. Forsyth, D. Blei, and M. Jordan.
Matching words and pictures.
Journal of Machine Learning Research, 3:1107–1135, 2003.
[paper]
-
D. Blei, A. Ng, and M. Jordan. Hierarchical Bayesian models for
applications in information retrieval.
In J. Bernardo, J. Berger, A. Dawid, D. Heckerman, A. Smith, and M. West,
editors, Bayesian Statistics 7, volume 7, pages 25–44. Oxford
University Press, 2003.
-
D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, January 2003.
[A shorter version appeared in NIPS 2002].
[paper] [code]
-
D. Blei, J. Bagnell, and A. McCallum. Learning with scope, with application
to information extraction and classification.
In Uncertainty in Artificial Intelligence: Proceedings of the Eighteenth
Conference [UAI-2002], pages 53–60, San Francisco, CA, 2002. Morgan
Kaufmann Publishers.
- D. Blei and P. Moreno. Topic
segmentation with an aspect hidden Markov model.
In Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information
retrieval, pages 343–348. ACM Press, 2001.
[paper]
-
D. Blei and L. Kaelbling. Shortest paths in a dynamic uncertain domain.
In IJCAI Workshop on Adaptive Spatial Representations of Dynamic
Environments, 1999.
[paper]