Schedule for COMS 6998-7 Spring 2025
intro slides
1/27
topic: information sources and measures
assigned reading:
Shannon, 1948
(1.2--1.7);
Shannon, 1951
optional:
Aczel, Forte, Ng, 1974
;
Brown et al, 1992a
slides
2/3
topic: maximum entropy models
assigned reading:
Berger et al, 1996
;
Dudík et al, 2004
optional:
Della Pietra et al, 1997
;
Csizár and Shields, 2004
(Section 3);
Phillips et al, 2004
slides
,
notes on maxent
2/10
topic: word embedding models
assigned reading:
Papadimitriou et al, 2000
; *
Collins et al, 2001
; *
Mikolov et al, 2013
strongly recommended but optional:
Pereira, 2000
(especially Sections 4 and 6)
optional:
Brown et al, 1992b
;
Stratos et al, 2014
;
Rudolph et al, 2016
;
Cotterell et al, 2017
slides
2/17
topic: word embeddings and neural language models
assigned reading: *
Gittens et al, 2017
(Sections 1--2); *
Bengio et al, 2003
; *
Collobert et al, 2011
optional:
Ando and Zhang, 2005
;
Gutmann and Hyvärinen, 2012
;
Arora et al, 2016
;
Ri et al, 2023
notes on skip-gram model
slides
2/24
topic: neural computation models
assigned reading: *
Barron, 1993
(but see below); *
Siegelmann and Sontag, 1992
; *
Hardt and Ma, 2017
optional:
Bach, 2024
(Section 9.3; can read this instead of
Barron, 1993
)
slides
3/3
(no lecture)
3/10
topic: neural computation models
assigned reading: *
Demircigil et al, 2017
; *
Elhage et al, 2021
; *
Kazemnejad et al, 2023
optional:
Krotov and Hopfield, 2016
;
Alammar, 2018
;
Sanford et al, 2024b
;
Guo et al, 2025
slides on associative memories
slides
3/17
(spring break: no class)
3/24
topic: neural computation models
assigned reading: *
Liu et al, 2023
; *
Sanford et al, 2024a
; *
Wen et al, 2024
optional:
Sanford et al, 2023
(Appendix A gives some limitations of feedforward nets and recurrent nets)
3/31
topic: learning theory for neural computation models
assigned reading: *
Goldberg and Jerrum, 1995
; *
Bartlett, 1996
optional:
Bartlett and Maass, 2003
slides
4/7
topic: learning theory for neural computation models
assigned reading: *
Edelman et al, 2022
;
Bietti et al, 2023
; *
Nichani et al, 2024
optional:
Li et al, 2024
4/14
topic: preference learning
assigned reading: *
Negahban et al, 2016
or *
Maystre and Grossglauser, 2015
; *
Gao et al, 2024
optional:
Kakade, 2001
;
Rafailov et al, 2023
slides
4/21
topic: chain-of-thought
assigned reading: *
Rivest and Sloan, 1994
; *
Merrill and Sabharwal, 2024
; *
Malach, 2024
slides
4/28
topic: calibration
assigned reading: *
Kalai and Vempala, 2024
; *
Miao and Kearns, 2025
note on Good-Turing
5/5
topic: chain-of-thought, compositional learning
assigned reading: *
Joshi et al, 2025
; *
Valiant, 2000
; *
Deng et al, 2021